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PREFACE.

This volume, although issued subsequently to Part

II. "SOUND," Part III. "LIGHT," Part IV. "HEAT," is

presented as the opening one of the series forming
" AN ELEMENTARY TEXT-BOOK ON PHYSICS." It is written

in the same exact, simple, and straightforward manner

which has commended the other volumes and made them

popular with Students who are preparing for any of the

usual Elementary Examinations on Physics.

The presentation of the subject in separate volumes

suited to the requirements of the Student was considered

desirable, as it enabled the author to deal adequately with

the fundamental facts and principles without the loss of

interest always manifest when the whole subject is com-

pressed into one small volume.

Teachers and reviewers have been unanimous in their

praise of the earlier volumes, both in regard to the manner

in which the subjects have been treated, and the excellent

print and diagrams, which are new, and not mere re-

arrangements of the old stereotyped forms.

A melancholy interest attaches to this present volume,

from the fact that the distinguished author died suddenly

soon after the completion of the work.

October, 1910,

281498
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GENERAL PHYSICS

CHAPTER I.

INTRODUCTORY.

1. The Scope Of Physics. The science of Physics may be

said to deal with the phenomena of matter and ether.

Matter is the material or stuff of which are made all bodies

which occupy space, and which are perceptible by us through

the senses. It possesses certain fundamental properties, such as

inertia and gravitation, which are dealt with later.

The ether is the medium which is assumed to fill all space,

and to permeate all matter. It cannot be perceived by the

senses, but there can be little doubt of its objective existence.

Our knowledge of its existence and properties is entirely of an

indirect character, derived from the study of the phenomena
which are assumed to be associated with it, but this knowledge
rests upon a very firm foundation of experimental evidence.

The relation between ether arid matter is of too uncertain and

speculative a character to be considered here. It may, however,

be stated that it is in every way probable that matter is in some

sense a modified form of ether, and that some of its properties

are determined by its relation with the ether with which it is

associated.

The branches into which the science of Physics is usually

divided are Motion, Properties of Matter, Sound, Heat (including

Radiation), Light, and Magnetism and Electricity.
1
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The measurement of space, the measurement of time, and the

measurement of quantity of matter are the fundamental mea-

surements of the science. The distribution of matter in space,

the specification of the relative position or configuration of any

system of material bodies, and the consideration of the changes

of configuration which take place in any system with time, are

included under the general term motion. The study of motion,

in this general sense, and the study of the general properties

of matter, form the usual introduction to Physics.

Sound or Acoustics deals with the vibratory motion of bodies

and with wave motion in material media, with special reference

to the sense of hearing.

The phenomena of Heat are phenomena pertaining to matter,

and include many important changes in the state and properties

of matter. Radiation in a limited sense is the transverse wave

motion set up in the ether by the vibratory motion of the

molecules of a body, and Light is radiation within certain

limits of wave length.

The phenomena of Magnetism and Electricity are essentially

ether phenomena produced under conditions associated with the

existence of certain states of strain or motion in the ether, and

with the effects attending the presence of matter in the ether

under these conditions.

The study of matter, in so far as it relates to the different

kinds of elementary substances or elements which constitute

matter, to the interaction of these elements with each other,

and to the composition and properties of the compounds they

form with each other, constitutes the science of Chemistry, and

does not come directly within the scope of Physics.

2. Physical Quantities. Physics is one of the exact

sciences. Measurement is the basis of its experimental work

and mathematical reasoning is the basis of its theory.

The physical quantities which are defined and measured

experimentally will be explained as they arise in the exposition
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of the subject. It will be understood, however, that at the very

outset quantities such as length, duration of time, and mass must

be measured. These lead to other quantities, such as area,

volume, velocity, and acceleration; and, as the subject develops,

more complex quantities such as force, work, energy, and power are

introduced. In the same way in every branch of the subject

all measurable quantities are denned and measured so that the

theoretical principles of the subject can be established on a sure

foundation of exact quantitative knowledge.

3. Units. The first essential in measuring any quantity is

a suitable unit of measurement. A unit must evidently be of

the same kind or denomination as the quantity to be measured,

and its magnitude must be definitely specified either by direct

reference to a standard in which it is realised, or by defining its

relation to the standard or standards on which its value ulti-

mately depends.

A quantity is measured in terms of a given unit by determin-

ing the number of times it contains the unit, and the magnitude
of the quantity can then be expressed as n times the magnitude
of the unit, or as equal to n units, where n is a number which

may be a whole number or a fraction. For example, any length

may be measured in terms of the yard as unit, and if a given

length is found to be 5*3 times the length of a yard it is said to

be 5*3 yards in length.

It will be seen that the magnitude of any quantity must

always be given as n units, and in order that it may be

completely specified, the value of n and the name of the unit

must be definitely stated. The number n which gives the

number of units in any magnitude is called the measure or

numeric of the magnitude.

When the magnitude of the same quantity is given in terms

of different units of the same kind the measures of the magni-

tude must evidently be different and must vary inversely as the

relative magnitudes of the units employed, A length of 2 yards
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may, for example, be expressed as 6 feet, or 72 inches. The

measures here are in the ratio 1 : 3 : 36 when the relative

magnitudes of the units are in the ratio 1 : -J : -^g-.
That is

r

the measure is multiplied oy n when the magnitude of the unit is

divided by n.

4. Fundamental and Derived Units. The magnitude
of the unit selected for the measurement of any quantity may be

decided on purely arbitrary grounds, or it may be determined by
a formal definition of the unit. If an arbitrary unit were

selected for the measurement of every physical quantity, without

any consideration of the inter-relations of the quantities, it

would be found that endless confusion and trouble would result

from the complicated relations between the units selected. For

example, if any arbitrary length were selected as unit of

length, and any arbitrary area as unit of area, it would

be necessary, in finding the area of any regular plane

figure by the rules of mensuration, to know the area of the

square on the unit of length in terms of the arbitrary unit

of area.

For this reason the plan has been adopted of selecting the

units of certain quantities as fundamental units, and then

deriving the units for all other quantities from these fundamental

units by means of carefully framed definitions. The units de-

rived in this way from the fundamental units are known as

derived units.

It is found that in order to build up a system of units on this

plan, the fundamental quantities need not be more than three in

number, and may, in theory, be any three quantities. The units

of these quantities, the fundamental units, may be selected as

arbitrary units or determined by definition, but, in either case,

they must be capable of exact realisation as permanent standards of

reference.

The quantities adopted as fundamental physical quantities are

length, mass, and time, so that the units of length, mass, and
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time are the fundamental units of the whole system of physical

units. All the other units of the system are derived units. The

unit of area, for example, is defined as the area of the square on

the unit of length, and is, therefore, derived from the unit of

length. Similarly the unit of volume is the volume of a cube

having its edge of unit length, and is also derived from the unit

of length. The unit of velocity is the unit of length per unit of

time, and is, therefore, derived from the units of length and time.

The unit of force is that force which, acting on unit mass, pro-

duces unit change of velocity in unit time, and is thus derived

from the units of length, mass, and time. In the same way any

other physical unit may be derived from one or more of the

three fundamental units.

The quantities length, mass, and time are specially suitable for

use as fundamental quantities. The units of length and mass

are capable of very exact realisation as permanent and invariable

standards, and the unit of time can be definitely specified in

terms of the time in which the earth makes one complete

revolution. The units of length and mass in general use are

arbitrary units. An attempt was made by French physicists, as

explained in Chapters iii. and v., to connect both these units

with natural constants, and so to put them on the same basis as

the unit of time. It was found, however, that the constants

selected were not ascertained with sufficient accuracy'" to enable

* This point may be made clearer by an example. Suppose the unit of

length to be specified as the millionth part of the polar diameter of the

Earth. In order to realise this unit as a permanent standard of reference

it is necessary to construct a bar of platinum or some permanent metal of

the specified length. This means that the length of the polar diameter must

be accurately known, and that the bar must be constructed so as to be

exactly equal to the millionth part of this known length. If the length
of the bar is derived from an inaccurate value of the polar diameter,

it must evidently be reconstructed when a more accurate value is^found,

or, if the old standard is retained, the specification of the unit must be

changed.
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the reference standards to be constructed in exact accordance

with the specifications of the units.

A system of units built up, in this way, of units derived from

certain fundamental units, is called an absolute system of units or

a system of absolute units.

The system of absolute units in general use in physics is the

C. Gr. S. system, in which the fundamental units of length, mass,

and time are the Centimetre, the Gramme, and the Second

respectively.

The "
English

"
system of absolute units, sometimes called the

F. P. S. system, is a system in which the Foot, the Pound, and

the Second are the fundamental units of length, mass, and time

respectively. It is still used in text books on theoretical

mechanics, but is seldom used in physics.

5. The Metric System. The metric system is not a system
of units in the sense explained in the foregoing article. It is

practically a set of
" measures

"
in which the decimal system is

employed in forming the multiples and sub-multiples of the units

selected.

The notation of the system is the same in every table. The

multiples of the unit by 10, 100, and 1,000 are designated by

placing the Greek prefixes deca-, hecto-, and kilo- before the

unit
;

and the corresponding sub-multiples are designated by

placing the Latin prefixes deci-, centi-, and milli- before the

unit. The multiple by 10,000, which is sometimes used, is dis-

tinguished by placing the prefix myria- before the unit. Thus

we have the following scheme in each table :

Myria- (unit) = 10,000 units.

( Kilo- (unit) .- 1,000 units.

Multiples, < Hecto (unit) = 100 units.

( Deca- (unit) = 10 units.

(Unit) 1 unit.

!Deci-

(unit) = f

l unit.

Centi- (unit) = '01 unit.

Milli- (unit) = "001 unit.
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The units of the system are given below :

QUANTITY MEASURED.



CHAPTER II.

SCALAR AND VECTOR QUANTITIES.

6. Scalar Quantities. A quantity which possesses magni-
tude only, and is, therefore, completely specified by its magnitude,
is known as a scalar or scalar quantity. Thus, area, volume,

time, mass, and other quantities to be dealt with later, are

scalar quantities.

Scalar quantities of the same kind are added and subtracted

by the ordinary arithmetical rules, or they may be assigned

positive and negative signs according to some recognised con-

vention, and treated as algebraic quantities.

7. Vector Quantities. A quantity which possesses direction

.as well as magnitude, is known as a vector or a vector quantity.

The distance of one point from another is a vector quantity,

and it will be found later that other quantities, such as dis-

placement, velocity, acceleration, and force, are vector quantities.

In dealing with vector quantities it is necessary to be able to

add and subtract them in such a way as to take account of the

direction as well as the magnitude of the quantities. Ordinary

arithmetical addition and subtraction take account of magnitude

only. Algebraic methods make provision for the addition and

subtraction of quantities which may have one of two opposite

directions denoted respectively by a positive and negative sign.

A special method must therefore be found for the addition and

subtraction of vector quantities.

8. Composition of Vector Quantities. The usual method

of adding and subtracting vector quantities is a graphical one.
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A straight line may represent any vector quantity if the

number which measures the length of the line is the same as the

number which measures the magnitude of the quantity, and if

the direction of the line represents the direction of the quantity.

The vector quantities to be added or subtracted may thus be

represented by straight lines, and addition or subtraction

becomes a graphical process.

The process of adding or compounding vector quantities is

known as the composition of the quantities, and the sum of the

added quantities is called the resultant. It is obvious that only

quantities of the same kind can be compounded, and that the

resultant is a quantity of the same kind as the quantities

compounded.
The rule for compounding two vector quantities by this method

may be given in the following terms.

From any point A, Fig. 1, draw two

straight lines AB and AC, to represent

the quantities in magnitude and direction.

Then complete the parallelogram, ABDC,
of which these two lines are adjacent

sides, and draw the diagonal AD from the

point A, This diagonal, AD, now repre-

sents the resultant of the two quantities in the same way as

the lines AB and AC represent the quantities themselves.

That is, the number which measures the length of AD is

the number which measures the magnitude of the resultant, and

the direction of AD represents the direction of the resultant.

This form of the rule may be called the parallelogram rule.

Another form known as the triangle rule may be derived from it.

It will be seen in Fig. 1 that the line BD is the same in

magnitude and direction as AC. The lines AB and BD, there-

fore, represent the quantities to be compounded, and AD repre-

sents their resultant. Hence, if starting from any point A,

we draw, one after the other, in order, two lines, AB and BD, to
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represent the quantities to be compounded ;
then AD, the third

side of the triangle ABD, drawn from the starting point A to

the finishing point D, represents the resultant of the two

quantities.

This is the triangle form of the rule for the composition of

two vector quantities. It has the advantage that it can be

extended in the same terms to provide a rule for the composi-

tion of any number of vector quantities. Thus, if we wish to

compound five vector quantities of the same kind we draw

from any starting point A (Fig. 2) five lines, AB, BC, CD,

DE, and EF, in successive order to represent the five quanti-

Fig. 3.

ties in magnitude and direction. The line AF, drawn from the

starting point A to the finishing point F of this sequence of

lines, then represents the resultant of the five vector quantities

in the same way as the lines AB, BC, CD, DE
;
and EF repre-

sent the quantities themselves. This rule, known as the polygon

rule, is evidently an extension of the triangle rule, for, by the

triangle rule, the resultant of the quantities represented by AB
and BC is represented by AC. Similarly, AD represents the

resultant of the quantities represented by AC and CD, or the

resultant of the three quantities represented by AB, BC, and

CD. In the same way it follows that AE represents the

resultant of the quantities represented by AB, BC, CD, and
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DE, and that AF represents the resultant of the quantities

represented by AB, BC, CD, DE, and EF.

The method of finding the difference of two vector quantities

is most conveniently derived from the triangle rule for com-

pounding two quantities.

Thus, in Fig. 1, since the resultant of the two quantities

represented by AB and BD is represented by AD, it follows

that the difference between the two quantities represented by
AD and AB is represented by BD.

The line BD (with the arrow from B to D) represents the

difference obtained by subtracting the quantity represented by

AB from the quantity represented by AD, while the line DB
(with the arrow from D to B) represents the difference obtained

by subtracting the quantity represented by AD from the quantity

represented by AB.

Hence, we have the following rule for finding the difference

of any two vector quantities of the same kind.

From any point A, Fig. 3, draw lines AB and AC to repre-

sent in magnitude and direction the two quantities whose differ-

ence is required ;
then join BC.

The line BC, drawn from B to C, then represents the differ-

ence obtained by taking the quantity represented by AB from

the quantity represented by AC.

9. Resolution of a Vector Quantity. Just as a number

(such as 12) may be split up arithmetically into an infinite

number of pairs of numbers (such as 9 and 3, or 8 and 4, or

10 and 2, or 5 '9 and 6'1, &c.), which, when added together,

make up the number as their sum, so any vector quantity may
be resolved into an infinite number of pairs of components

which, when compounded together, make up the given quantity
as their resultant. This may be done by direct application of

the parallelogram or triangle rule. Let AB, Fig. 4, represent

any vector quantity ; then, if we construct any parallelogram,

ACDB, on AB as diagonal, the lines AC and AD represent two
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quantities which, if compounded together, make up the quantity

represented by AB as their resultant. That is, the quantity

represented by AB is.resolved, or split up into two components

represented by AC and AD. Since this is true for any parallelo-

gram constructed on AB as diagonal, it is evident that the

quantity represented by AB may, in this way, be resolved into

any number of pairs of components.
In the same way with the triangle rule, if AB, Fig. 5, repre-

sent any vector quantity, and ACB be any triangle constructed

on AB as base, the lines AC and CB represent quantities which,
if compounded together, make up the quantity represented by
AB as resultant. That is, the quantity represented by AB is

resolved into two components represented by AC and CB.

Fig 4. Fig. 5.

If it is required to resolve any given quantity into two com-

ponents, of which one is given, it is evidently sufficient to find

the difference between the two given quantities, as explained

above. Thus, if AB, Fig. 5, represent the given quantity, and

AC the known component, then CB represents the other com-

ponent, for the quantities represented by AC and CB have the

quantity represented by AB as their resultant.

If it is required to resolve a given quantity into two com-

ponents in given directions, it will be found most convenient

to apply the parallelogram rule. Thus, let AB, Fig. 6, represent

the given quantity, and AX and AY the given directions for the

required components. Through B draw the lines BC and BD,

parallel respectively to AY and AX, and cutting these lines at

the points C and D. Then the lines AC and AD obviously

represent the required components.
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An important case of the resolution of a vector quantity into

components, is that in which the given quantity is to be resolved

into two components at right angles, one of which is required to

be in a given direction, and the other at right angles to it. For

example, let it be required to resolve the given quantity, repre-

sented by AB in Fig. 7, into two rectangular components, one of

which is to be in the direction AX, and the other at right

angles to AX.

From B draw BC perpendicular to AX, and cutting it at C,

and complete the rectangle ACBD. The lines AC and AD now

represent the required components ;
the component represented

c

Fig. 6. Fig.

by AC has the given direction AX, and the other, represented

by AD, has a direction at right angles to AX.

If the angle BAX, the angle between the direction of the

given quantity represented by AB and the given direction AX,
be denoted by a it will be seen that

AC
AB

= cos a, or AC = AB . cos a,

and
AD CB . ATJ .

-_-- = - = sin a, or AD = AB . sin a.
AJ5 A-t>

That is, if R denote the magnitude of the given quantity

represented by AB, and P and Q the magnitudes of the

components represented by AC and AD respectively, we have
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P = R . cos a

and Q = R . sin a,

where a is the angle between the direction of the given quantity

R and the given direction of the component P.

It is also evident, by application of Euc. i. 47 to the figure,

that

AB2 = AC2 + CB2 = AC 2 + AD2
,

or R2 = P2 + Q2
.

Fig. 8.

This relation may evidently be applied to find the resultant R
of two vector quantities, P and Q, whose directions are at right

angles to each other.

If the directions of the quantities P and Q are not at right

angles but make an angle, a, with each other as in Fig. 8, it can

easily be proved with the aid of Euc. ii. 1 2 and 1 3 that

R2 - P2 + Q2 + 2PQ cos a.
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CHAPTER III.

MEASUREMENT OP LENGTH, AREA,
AND VOLUME.

10. Units Of Length. The legal units of length in England

are the yard and the metre. The yard is defined by Act of

Parliament as the distance at 62 F. between the centres of the

transverse lines on the two gold plugs in a bronze bar, originally

deposited in the office of the Exchequer, but now kept at the

Standard Office of the Board of Trade. The length thus defined

and preserved is known as the standard yard, and copies of the

standard are kept at the Houses of Parliament, the Royal Mint,

the Royal Observatory at Greenwich, and the Royal Society of

London.

The multiples and sub-multiples of the yard are given in the

familiar table of English long measure. We need only notice

here the foot and the inch as sub-multiples and the mile as a

multiple.

Thus we have :

12 inches = 1 foot.

3 feet = 1 yard.

1760 yards = 1 mile.

It will be understood that, although the yard is the legal unit

or standard of length, any one of its sub-multiples or multiples,

or, in fact, any specified part of it, may be taken as the unit of

length in any set of length measurements.

The metre is really the legal unit of length in France, but it

was legalised in England in 1897. It is defined as the distance

at C. between the ends of a platinum rod constructed by Borda.
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The metre was intended originally to be the ten-millionth part

of the distance from the North Pole to the Equator measured

along the meridian passing through Paris. Very careful mea-

surements were made* for the purpose of determining this

distance, and Borda constructed the platinum bar now used as the

standard metre to be the ten-millionth part of the result then

obtained. Later measurements, however, show that the distance

from the North Pole to the Equator along the meridian of Paris

is rather more than ten million times the length of Borda's barr

so that the metre is no longer defined as the ten-millionth part

of this quadrant on the earth's surface, but simply as the distance

at C. between the ends of Borda's platinum bar.

Although the metre may be legally used in England as a

standard of length it is not yet in common use in this country.

It is, however, the standard most generally adopted in other

European countries.

The multiples and sub-multiples of the metre are given below

Kilometre (km.) = 1000 metres.

Hectometre = 100

Decametre = 10 ,,

Metre
Decimetre (dm.) = *1 metre.

Centimetre (cm.) = *01 ,,

Millimetre (mm.) = -001 ,,

Of the multiples only the kilometre is in general use
;
it is

used on the Continent for specifying distance from place to place

in the same way as we use the mile in England.

The sub-multiples are all in use, but the centimetre and

millimetre are most generally used.

The unit of length generally adopted for scientific measure-

ments is the centimetre. The foot and the inch are occasionally

used in England for certain measurements, but it is now practi-

cally the universal custom to employ the centimetre as the unit

of length in all physical measurements.
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The relative magnitude of the yard and the metre is given

with sufficient accuracy by the following equivalents:

1 metre = 39 -.37 inches = 1-0936 yards.
1 yard = 0-9144 metre = 91 "44 cms.

These equivalents may be reduced to the following approxi-

mate values which are convenient for general use.

1 metre = 3 '28 feet.

1 foot = 30-48 cms.

1 inch = 2-54 cms.

For rough calculations it is convenient to remember that

10 cms. = 4 inches (nearly),

or, more exactly, 33 cms. = 13 inches;

also that a millimetre is slightly less than the twenty-fifth of an

inch.

The relation between the mile and the kilometre is given by
the equivalent :

1 kilometre = '62137 mile.

1 mile 1 -60935 kilometres.

That is, a kilometre is nearly five-eighths of a mile, so that

five miles is, roughly, equal to eight kilometres.

11. Measuring" Scales. The measuring scale in common

use for physical measurements is the metre scale one metre in

length. It is usually made of box-wood or metal, and is

generally graduated to show decimetres, centimetres, and milli-

metres along one measuring edge, and for convenience inches

and tenths of an inch along another edge. Small steel scales

showing a variety of small divisions of the inch and centimetre

are also in use.

The most accurate metre scales are made in metal. Steel,

brass, and gun-metal have been used for this purpose, but it is

probable that the new metal "
invar," an alloy of nickel and steel,

will be generally used in future. This metal has a very small

coefficient of expansion with change of temperature, so that a scale
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made of it would not be subject to any appreciable error due to

change of length with change of temperature.

Metre scales are generally made as line scales that is, the

graduated metre extends from a line near one end to a line near

the other end. Some scales are, however, made as end scales, the

graduated metre extending from one end of the scale to the

other. Borda's standard metre, for example, is. an end measure,

while the standard yard is a line measure.

12. The Vernier. In certain cases a length may be measured

with sufficient accuracy by simply applying the measuring edge

of a suitable scale directly to it, and then reading off the required

length from the graduations of the scale. With a scale graduated

in tenths of an inch it is possible in this way, by estimating tenths

of a scale division, to measure a length with fair accuracy to

one-hundredth of an inch. Similarly, with a scale graduated

in millimetres it is possible with care and practice to

read to a tenth of a millimetre or one-hundredth of a

centimetre.

It is not possible to attain to greater accuracy than this by

any further subdivision of the scale, so that when greater

accuracy is required other methods have to be adopted. Of

these methods, the vernier method is the simplest and most

commonly used.

A vernier is a short auxiliary scale used with the measuring

scale for the purpose of reading the scale to some particular

fraction of a scale division. The general principle on which

a vernier is constructed may be stated concisely in the following

way. If it is desired to construct a vernier to read to of

a scale division, a length equal to (n 1) or (n + 1) scale

divisions is takfcn and divided into n equal parts to give the

vernier divisions. Thus, if we wish to make a vernier to read

to -^ of a scale division we mark off a length equal to 19

(or 21) scale divisions and divide it into twenty equal parts.

The small scale thus obtained would be a vernier scale which
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would enable readings to be taken on the measuring scale to

one-twentieth of a scale division.

It will be seen that by this method of construction a division

on a vernier reading to of a scale division differs from a scale

division by -1 of a scale division
;

it is either the -i- part of

a scale division less, or the part greater than a scale division,

according as it is made on the (n 1) or (n + 1) plan explained

above. It is generally most convenient to make a vernier on

(n 1
) plan so that its divisions are less than the scale divisions

by -i- of a scale division. This difference between the length of

a vernier division and the length of a scale division given as

a fraction of a scale division is known as the least count of a

vernier.

MEASURING SCALE

The method of using a vernier can now be explained with the

help of the following example.

Suppose it is required to measure the length of the rod AB

by means of the measuring scale and vernier shown in Fig. 9.

It will be seen from the figure that the length of the vernier is

equal to 9 scale divisions, and that it is divided into 10 equal

parts ;
it therefore reads to TV of a scale division, or its least

count is
-j

3
^ of a scale division.

When the measuring scale is applied directly to AB, as shown

in the figure, the length of AB is found to be greater than three

and less than four scale divisions. The vernier is then applied,

as shown at BC, so that the zero division is placed exactly at the

point whose position on the scale is to be determined. The length of

AB is thus seen to be equal to three scale divisions and the
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portion of the fourth division which lies to the left of the

zero of the vernier.

If we now pass along 4he vernier from the zero to the sixth

division we see that the distance between each successive

division and the scale division immediately to the left of it

gets less and less, until, at the sixth division of the vernier, the

two divisions are coincident. This evidently indicates that the

distance from the zero of the vernier to the first scale division to

the left of it (3) is 6 tenths of a scale division. For, from the

construction of the vernier the corresponding distance at the

fifth vernier division is 1 tenth of a scale division, at the fourth

division it is 2 tenths, at the third 3 tenths, at the second

4 tenths, at the first 5 tenths, and at the zero 6 tenths. That

is, the length of AB is 3*6 scale divisions.

MEASURING SCALE

VERNIER
B

Fig. 10.

In the same way it can he made out that the length of the

rod AB in Fig. 10 is 18-^-J- scale divisions, or 18*55 scale

divisions.

The manner in which the vernier divisions are marked and

numbered should be noted. It will be seen that the numbering
is in the same direction on the vernier as on the scale.

The principle of the vernier is applied in a number of

measuring instruments. The most important of these is the

vernier callipers shown in Fig. 11. The purpose of the

instrument is sufficiently indicated for general purposes in

the figure. The details of its construction and the method

of using it can be learnt satisfactorily only by practice in the

laboratory.
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13. The Micrometer Screw. Another important method of

attaining great accuracy in the measurement of length depends

upon the use of the micrometer screw. This is merely a very

accurately cut screw of small pitch, pro-

vided with a large head, which is divided

round its circumference into a convenient

number of equal parts arranged so that

any fraction of a complete turn of the

screw can be measured with an accuracy

which depends upon the size of the head

and the number of divisions into which

its circumference is divided. It is called

a micrometer screw because it is capable

of measuring very small differences in

length.

The theory of the micrometer screw is

simple. It is evident that for one com-

plete turn of the screw the point moves

through a distance equal to the pitch of

the screw. Hence, if by dividing the

head of the screw into 10, 100, or

1,000 parts, we can measure the tenth,

hundredth, or thousandth part of a com-

plete turn, we can measure by means of

the point of the screw to one-tenth, one-

hundredth, or one - thousandth of the

pitch of the screw. For example, if the

pitch of the screw is J mm., and the

head is divided into 500 parts, the

turning of the screw through one of

these parts causes a displacement of

the point of the screw through ^-^ of

J mm., or '001 mm. A screw constructed in this

would, therefore, be able to indicate a difference in

way
the
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position of its point equal to the thousandth part of a

millimetre.

Fig. 1 2 indicates diagrammatically the manner in which the

principle of the micrometer screw can be adapted for measuring
short lengths or small differences in length.

The screw gauge shown in Fig. 13 is constructed on this

principle. The divisions"of the head are marked, as seen in the

Fig. 12.

figure, round the edge of a sleeve carried by the head, and

fitting over the collar in which the screw works. The instru-

ment is used for measuring the diameters of wires and for other

similar measurements.

The object to bejneasured is placed between the jaws of the

gauge, and the difference;between the reading of the screw head

Fig. 13.

when the object is in position, and the zero reading when the

jaws are in contact, gives the thickness of the object between

the jaws.

14. The Cathetometer. The cathetometer is an instru-

ment used for measuring differences in vertical height.

A simple form of the instrument is shown in Fig. 14. It

consists essentially of (a) a vertical scale engraved on, or attached
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to a vertical metal rod, and (b) a telescope carried by a slide,

which can be moved up and down the rod. This slide can be

clamped at any point on the rod, and its position on the scale

can then be read accurately by means of a vernier which moves

with it over the scale.

The telescope is generally

mounted on the slide in such a

way that it can be rotated round

the rod as axis, and also round a

horizontal axis, so that its line of

sight can be elevated or depressed

as required. It carries a spirit

level in order that it may, when

required, be set in a horizontal

position.

The metal rod or pillar which

carries the telescope is usually

mounted on a heavy base pro-

vided with levelling screws, in

order that it may be possible to

adjust the rod and scale in a

vertical position.

In order to obtain accurate

readings with the instrument, it

is essential (1) that the scale rod

should be vertical; and (2) that in

any given measurement, or set of

measurements, the axis of the tele-

scope should make the same angle

with the horizontal at all points on the scale at which

readings are taken. The first adjustment is readily made

by adjusting the levelling screws of the base until the tele-

scope, after being set horizontal in any position, remains

horizontal throughout a complete revolution round the rod as

Fig. 14.
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axis. The second condition is ensured if the telescope is

horizontal in all positions, but it is evidently fulfilled (when the

scale rod is vertical) for any position of the telescope relative to

the horizontal, so long as the adjustments of the telescope

remain unchanged throughout the readings.

When the cathetometer is properly adjusted the vertical

distance between any two points is readily measured by adjust-

ing the telescope until one of the points is seen at the inter-

section of the cross wire in the field of view, and then raising or

lowering the telescope on the scale (without altering its adjust-

ment on the slide) until the second point is seen in the same

way. The difference of the readings of the vernier on the vertical

scale for these two positions, then gives the required vertical

distance between the points.

It must be remembered that a good cathetometer is a very

complicated instrument, and the full details of its construction

and the methods of adjusting it and using it can only be learnt

by practice in a laboratory.

15. Measurement Of Area. The unit of area in all

physical measurements is the square on the unit of length as

side. Thus, if the foot, inch, or centimetre is the unit of length,

then the square foot, the square inch, or the square centimetre

is the corresponding unit of area.

As the centimetre is the unit of length generally adopted in

all physical measurements, the square centimetre is the unit of

area in most general use.

When the unit of area is derived in this way from the unit of

length, it is evident that the multiples and sub-multiples of the

unit of area can be derived from the corresponding multiples and

sub-multiples of the unit of length. Thus, since the square

foot is the square on a side 1 foot or 1 2 inches long, it must

contain 12 2 or 144 square inches. Similarly, since 1 centi-

metre = 10 millimetres, we must have

1 sq. cm. = 102
sq. mms. = 100 sq. mms.;
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and, in the same way,

1 square decimetre = 102
sq. cms. = 100 sq. cms.

and, 1 square metre = 100 2
sq. cms. = 10,000 sq. cms.

The numerical relations between the square foot or the square

inch, and the square cm. can be derived from the linear relations

already given. The following equivalents may, however, be

given :

1 sq. foot = 929-04 sq. cms.

1 sq. in. = 6-4517

1 sq. cm. = '155 sq. inch.

It is convenient to remember that 31 square inches is almost

exactly equal to 200 square centimetres.

The measurement of the area of any regular figure resolves

itself into measurement of length. The necessary dimensions of

the figure are measured by some suitable method of length

measurement, and the area is calculated by the appropriate rule

in mensuration.

The area of any irregular figure can be found approximately

by transferring the figure to squared paper, and counting the

number of small squares of known area which are enclosed by it.

It can also be found with fair accuracy by cutting out the figure

in thin foil or cardboard of uniform thickness, and then corn-

paring the weight of this piece of foil or cardboard with the

weight of a known area of the same material.

The area of an irregular plane figure can be measured

accurately by means of a mathematical instrument known as

the Planimeter. The theory and construction of this instrument

are, however, beyond the scope of this work, and cannot here be

considered.

16. Measurement of Volume. The unit of volume

adopted in physical measurement is the cube on the unit of

length as edge. Thus if the foot, inch, or centimetre is taken as

the unit of length, the cubic foot, the cubic inch, or the cubic

centimetre is the corresponding unit of volume.
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The centimetre being the general unit of length the cubic

centimetre is the unit of volume in general use in all physical

measurements.

When the unit of volume is derived in this way from the unit

of length the multiples and sub-multiples of the unit of volume

can be derived, as in the case of the units of area, from the cor-

responding multiples and sub-multiples of the unit of length.

Thus, since the cubic foot is a cube of 1 foot or 1 2 inches edge,

it must contain 12 3 or 1,728 cubic inches. Similarly, since a

cubic centimetre is a cube of 1 centimetre or 10 millimetres

edge it must contain 103 or 1,000 cubic millimetres. In the

same way we have

1 cubic decimetre = 103 cub. cms. = 1,000 cub. cms.,

or,

1 cubic metre = 1003 cub. cms. = 1,000,000 cub. cms.

The relative magnitude of the cubic inch or the cubic foot and

the cubic centimetre is conveniently expressed by the following

equivalents
1 cub. inch = 16 '388 cub. cms.

1 cub. era. = '06102 cub. in.

From these values it will be seen that 1,000 cub. cms. is only

very slightly greater than 61 cubic inches.

The cubic centimetre is also the unit of capacity generally used

in measuring the volume of a liquid or a gas in all scientific

measurements.

The litre, the unit of capacity adopted in the metric system of

units, is a cubic decimetre or 1,000 cubic centimetres. It is the

unit in which large volumes of a liquid or a gas are generally

expressed.

The English units of capacity are seldom used in scientific

measurements. The gallon is the volume occupied by 1 pounds

of pure water at 62 F., and is equal to 277*274 cubic inches.
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The sub-multiples of the gallon, the pint, and the quart are

defined by the relation

1 gallon = 4 quarts = 8 pints.

The fluid ounce is the volume occupied by one ounce of pure
water at 62 F., and is, therefore, the T^ part of a gallon.

It follows from this that a pint is equal to 20 fluid ounces.

The measurement of the volume of any regular solid resolves

itself, as in the measurement of area, into measurement of length.

The necessary dimensions of the solid are measured by some

suitable method of length measurement, and the volume

of the solid is then calculated by the appropriate rule of

mensuration.

The volume of an irregularly shaped body can be measured by

measuring the volume of water which it displaces, or, much more

accurately, by determining its apparent loss of weight when

weighed in water, or in some liquid in which it is insoluble, as

explained later. .

The volume of a liquid is generally measured by means of a

graduated measuring vessel. Some of the vessels in common use

for this purpose are shown in Figs. 15 and 16.

The capacity, or internal volume, of any vessel or tube is

generally found by finding the weight of the quantity of water

or mercury which exactly fills it and then deducing the required

volume from this weight, as explained in a later article.

17. Measurement of an Angle. The unit of angular

measurement is derived from the right angle. The degree, which

is the TTO Pai>t of a right angle, is the unit generally adopted
in the measurement of angles.

The subdivisions of the degree are the minute, and the second,

a degree being divided into 60 minutes and a minute into 60

seconds. That is

60 seconds = 1 minute.

60 minutes = 1 degree.
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I

Figs. 15 and 16.
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or, in the usual notation,

60" = 1'

60' = 1

The usual method of measuring an angle in practice is by
means of a divided circular scale. The arc of a circle is propor-

tional to the angle which it subtends at the centre of the circle.

so that by subdividing the circumference of a circle into 360

equal parts we subdivide the four right angles at the centre of

the circle into 360 degrees.

A circular scale for the accurate measurement of angles is

generally divided to show divisions less than a degree, and is also

provided with a vernier reading to some convenient fraction of a

scale division. A common form of scale, for example, is divided

into 20' divisions, and carries a vernier reading to V of a

division. With this scale an angle at the centre of the scale

could be measured to the nearest minute.

For theoretical purposes an angle is frequently measured by
the ratio of the arc which it subtends at the centre of a circle to

the radius of the circle. This ratio gives what is called the

circular measure of the angle.

Since the ratio, ^ , which gives the circular measure of
'

radius'

an angle is of unit value when the arc is equal to the radius,

it follows that the unit of circular measure is the angle which is

subtended at the centre of the circle by an arc equal in length to

the radius. This unit is called a radian.

A right angle at the centre of a circle is subtended by an arc

equal to one-fourth of the circumference. If r denote the radius

of the circle, then 2irr, where TT = 3*1416, is its circumference,

and is one-fourth of the circumference. The circular measure
a

of a right angle is, therefore, given by the ratio r or ,

2
/

2
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That is,

or

or

GENERAL PHYSICS.

- radians = 90,
- -

90 x f>
-

1 radian = - - = 57'2958
(

7T

1 radian = 57 17' 44-9".

It should be noted that an angle is not a physical quantity.

It is merely a number, the ratio of two lengths, and its measure-

ment is, in practice, essentially a measurement of length.
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CHAPTER IV.

MEASUREMENT OP TIME.

18. Units Of Time. The standard unit of time is derived

from the period of rotation of the earth on its axis.

The interval of time that elapses between two successive

transits of a fixed star across the meridian of any place is almost

exactly equal to the period of time in which the earth makes

one complete revolution.

The star is so distant that the direction in which it is seen

from the earth is practically the same from all points on the

earth's orbit round the sun, and the period between two

successive transits of the star is, therefore, practically equal to the

period of the earth's rotation on its axis.

This period of time is known as a sidereal day and is the

astronomical unit of time.

The interval of time that elapses between two successive

transits of the sun across the meridian of a place is not, however,

equal to the time of one complete revolution of the earth on its

axis, and is found also to vary from day to day. One reason

for this is indicated in Fig. 1 7. Let A, B, and C represent the

positions of the earth in its orbit round the sun, S, at noon on

three consecutive days, at the place marked by the small arrow

in the figure. If we consider the direction of the earth's

rotation on its axis, as shown in the figure, we can see that

the interval of time that elapses between the instant the earth

is at A, with the small arrow pointing towards S, and the instant

it is at B, with the small arrow again pointing to S, is the time
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taken by the earth in rotating through one complete revolution

and the angle ASB. Similarly, the interval between the positions

B and C is the time in which the earth rotates through a complete

revolution and the angle BSC. Now the angles ASB and BSC

are not equal, for the earth moves with variable velocity in an

elliptical orbit round the sun, and the line joining it to the sun

does not sweep out equal angles in consecutive days. It follows

from this that the interval of time which elapses between two

successive transits of the sun across the meridian of a place, or^

in other words, the interval between noon by the sun on two

successive days at any place is greater than the time in which

the earth makes one complete revolution on its axis and varies

from day to day throughout the year.

Another cause of variation which pro-

duces a similar effect to a smaller degree

is the inclination of the earth's axis to

the plane of its orbit round the sun.

If, however, we take the average or

mean value of this interval for a complete

year, we get a definite interval of time

known as the mean solar day.

B The mean solar day is divided into

24 hours, the hour into 60 minutes, and

the minute into 60 seconds.

A mean solar second is, therefore, the g-g-.Vw Part of a

mean solar day.

This unit, the mean solar second, is the unit of time generally

adopted in all physical measurements.

The sidereal clay is obviously less than the mean solar day,

and is calculated to be equal to 23 hours 56 minutes 4'09

seconds of mean solar time.

19. Instruments used for the Measurement of Time.

The instrument generally used for the measurement of time is a

clock or watch.
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The mechanism and construction of a clock or watch cannot

be considered here in any detail.* The following general points

may, however, be noted. The mechanism of any instrument of

this kind consists of four essential parts (a) the mainspring or

weights, from which the motive power is derived; (ft)
the pendulum

or balance wheel, which determines by its motion the rate at

which the mechanism moves; (c) the escapement, by which the

pendulum or balance wheel is maintained in

motion and is able, at the same time, to con-

trol and regulate the action of the motive

power ;
and (d) the train of wheels by which

the indicating hands are rotated.

A simple form of escapement, known as

the dead beat escapement, is shown in Fig. 18.

In this figure the essential parts of the

mechanism are easily distinguished. It is

so constructed that the pendulum receives

the successive impulses which maintain it

in motion once during each swing, at the

instant when it is at the middle point of

its swing. These impulses are communi-

cated by the teeth of the escapement wheel

through the crutch and pendulum fork

directly to the pendulum, and as they are

communicated only when the pendulum is at

the middle point of its swing, they have no

disturbing effect on the time of swing.

The teeth of the escapement wheel are thus allowed to "
escape

"

from the pallets of the crutch at regular equal intervals, which

are determined by the time of swing of the pendulum.

An accurately made clock controlled by a pendulum, and made

to go with practically perfect regularity, is called a standard

clock. It may be regulated to indicate astronomical time with

* See Ball's Experimental Mechanics. Lecture xx.

Fig. 18.
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24 hours to the sidereal day, or mean solar time, in the usual

way.

An accurately made clock or watch controlled by a balance

wheel, and constructed to go with the most perfect regularity

possible, is called a chronometer. It is the instrument generally

used in navigation and is usually regulated to indicate mean

solar time.

The principle involved in the regulation of the motion of a

clock or watch by means of a pendulum or balance wheel is

described in Art. 43. It is there explained that any body in

vibratory motion executes each complete vibration, or each

complete to-and-from movement, in the same time. This

characteristic of vibratory motion, known as isochronism, is the

fundamental principle of clock and watch construction. The

period of vibration of the pendulum or balance wheel determines

and regulates the rate at which the clock goes.

The same principle is applied in the use of a tuning-fork for

recording and measuring very short intervals of time. If the

prong of a tuning-fork in vibration makes n complete vibrations

per second it makes every complete vibration in ^ of a second,

and if the vibrations are recorded in any suitable way they can be

used to measure very short intervals of time.

The chronograph, shown in Fig 1 9, is a simple form of apparatus

in which a tuning-fork is used in this way to record and measure

short intervals of time. A light metal style is attached to the

end of one of the prongs of the fork, and the fork is mounted so

that the tip of the style rests lightly on the surface of a sheet of

smoked paper rolled round the large drum shown in the figure.

This drum is rotated by hand or by clockwork, and the point of

the style traces a line on the smoked surface on which it rests as

the drum rotates. If the fork is not in vibration this line is a

straight line, but if it is in vibration the line has a characteristic

wavy form, in which the length of each wave corresponds to the

period of a complete vibration.
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The line thus traced on the smoked surface may evidently be

used for measuring the interval of time between any two instants

if the points on the trace corresponding to these instants can be

marked. This might be done by arranging for the drum to

receive a sudden small displacement parallel to its axis at the

instants to be marked. While the fork is in vibration the

displacements thus produced in the wavy trace on the smoked

paper could readily be detected, and the interval of time between

the instants at which the displacements were made would be

Fig. 1 9. Chronograph.

given by the number of complete waves in the portion of the

trace between the displacements.

The method in general use for marking the trace on a chrono-

graph is, however, an electrical one which is simpler and more

satisfactory in practice than any mechanical method. The drum

and the tuning fork are connected to the secondary terminals of

an induction coil, so that a spark passes between the point of the

style and the drum whenever the primary circuit of the coil is
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made or broken. This spark produces a small white mark on the

smoked paper, and in this way the trace made by the style can

be marked at any instant by merely making or breaking the

primary circuit.

When the frequency of the fork is high, very short intervals

of time can in this way be recorded and measured. Thus, if

the fork has a frequency of 500 vibrations per second, each

complete wave of the trace on the smoked paper corresponds to

0*002 of a second, and a portion of the trace, estimated to

contain 8 '3 complete wave lengths, would correspond to an

interval of
-0166 of a second.

The frequency of the tuning-forks used can readily be

standardised by arranging for the pendulum of a standardised

clock beating seconds to close the primary circuit of the induction

coil at a certain instant in every beat, while the fork records its

trace on the smoked paper. The interval between the marks on

the trace will now correspond exactly to one second, and the

average number of waves in this interval on the trace can

readily be determined by counting them for several successive

seconds.* This number is evidently the number of complete

vibrations made by the fork in one second.

* The drum is mounted on a screw as axis, so that it moves parallel to

its length as it rotates. By this arrangement a very long spiral trace

may be taken without any overlapping.
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CHAPTER V.

MEASUREMENT OF MASS.

20. Mass.* The mass of a body may be defined as the

quantity of matter it contains. This definition is somewhat

unsatisfactory from some points of view. The limited meaning
which must be attached to the words,

"
quantity of matter," will

be better understood at a later stage.

It must be noted, however, that the mass of a body is a

quantity which can be changed only by changing the quantity of

matter in the body. Thus, if we add matter of any kind to a

body we increase its mass, and if we take away any portion of

the body we decrease its mass. Hence, if the mass of a body is

found to change, it must be inferred that the body has gained or

lost matter, and the quantity of matter gained or lost is measured

by the change of mass.

21. Weight.* The fact that all bodies with which we have

to deal possess weight is familiar to us from everyday experience.

A body is said to be heavy or light according as its weight is

great or small.

It will be understood later that the weight of a body is due

to the attraction exerted by the earth on the body. It is a

general property of matter that any two pieces of matter

mutually attract each other. The very large piece of matter

which makes up the earth, and the small piece of matter which

makes up the body, therefore attract each other mutually, and

the force with which the earth pulls the body towards it is the

weight of the body.
* See also Arts. 38 and 39. Recent speculations as to the nature of

mass need not here be considered.
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The weight of any body may, therefore, be defined as the

downward pull which the earth exerts on that body. The

direction of the pull is vertically downwards, towards the centre

of the earth, so that when a body falls freely the line along

which it falls is a vertical line. The magnitude of the pull

depends upon the mass of the body and upon its distance from

the centre of the earth.

In comparing mass and weight, it will be seen that the mass

of a body is essentially constant, and cannot be changed without

adding to or taking from the matter in the body. The weight
of the body, on the other hand, depends upon its position

relative to the earth, and changes as the distance of the body
from the centre of the earth changes. The weight of a body,

for example, is less at the equator than at the poles, and is

found to increase slightly as the latitude of the place at which

it is measured increases. This shows that the weight decreases

as the distance from the centre of the earth increases. For the

same reason the weight of a body decreases as its height above

the sea level increases.

22. Units Of Mass. The standard unit of mass in England
is the pound. The pound (avoirdupois) is denned as the mass

of a piece of platinum, which is preserved with other standards

at the Standards Office of the Board of Trade.

Of the numerous multiples and sub-multiples of the pound we

need only notice here the ounce and the grain. The ounce is

the sixteenth part of a pound, and the grain is the seven-

thousandth part of a pound, so that we have

1 pound =16 ounces = 7,000 grains,

or, in the usual abbreviated notation,

1 Ib. = 16 ozs. = 7,000 grs.

The standard unit from which the gramme of the metric

system is derived is the standard kilogramme. This is the mass

of a piece of platinum kept at the Bureau des poids et des
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inesures in Paris, and known as the kilogramme des archives. It

was originally constructed by Borda to be equal to the mass

of a cubic decimetre of pure water at 4 C., but later measure-

ments show that it is slightly greater than this mass.

The derivatives of the standard kilogramme in general use are

the gramme and its sub-multiples the decigramme, centigramme,

and milligramme. Thus, we have

1 kilogramme (kg.)
= 1,000 grammes.

1 gramme (grm. )
= 10 decigrammes = 100 centigrammes (cgs.).
= 1,000 milligrammes (mgs. ).

In physical measurements it is the general practice to express

all masses in grammes, or, if they are very large, in kilo-

grammes. Thus, we may have 896*423 grammes, or 126'432

kilogrammes.

The mass of a cubic decimetre, or 1,000 cubic centimetres of

pure water at 4 C., although not exactly equal to a kilogramme
or 1000 grammes, is very nearly equal to this mass. A gramme
is therefore almost exactly the mass of one cubic centimetre of

pure water at 4 C. The mean result of recent measurements

gives the exact mass of a cubic centimetre of water at 4 C. to

be 0-999955 gramme.
The relative magnitude of the pound and the gramme is given

by the following equivalents.

1 kilogramme = 2 '2046 pounds.
1 gramme = '0022 pound = 15 '432 grains.

1 pound = 453'59 grammes.

For ordinary purposes it is convenient to take

1 kilogramme = 2'2 pounds,

and

1 pound = 453*6 grammes.

The equivalent, 1 gramme = 15'432 grains, is easily remembered.

23. Comparison of Mass by the Process of Weighing-.
If we are provided with a measuring scale derived from the

standard of length and showing all necessary multiples and
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sub-multiples of the unit, we have no difficulty in measuring

any unknown length by means of the scale. The process by

which the measurement can be made is obvious, and easily

understood.

If, however, we are provided with a copy of the unit of mass,

and with all necessary multiples and sub-multiples of the unit,

and are required to measure the mass of a given body in terms

of the unit, we cannot proceed with the measurement without

some understanding as to the process to be adopted in comparing

the masses.

The process generally adopted in comparing any two masses

is that of weighing. This process is based on the understanding

that the weight of a body is directly proportional to its mass,

and that bodies which are equal in weight are therefore equal

also in mass.

The adoption of the process of weighing for the comparison of

masses may be looked upon as an extension of the definition of

mass. It implies that the mass of a body, or " the quantity of

matter" in a body, is a quantity which is directly proportional to

the force of attraction which the earth exerts on the body.

The instrument by which masses are compared by the process

of weighing is called a balance. A simple form of balance is

shown in Fig. 20.

It consists essentially of a horizontal beam balanced centrally

on a knife-edge, and carrying a scale-pan suspended from each

end of the beam at points equidistant from the central knife-

edge. The beam is thus balanced as a horizontal lever on the

central knife-edge as a fulcrum, and the scale-pans are suspended

one on each side of the fulcrum, at the ends of equal arms.

From this construction it is obvious that if the body whose

mass is to be determined is placed in one pan, and multiples and

sub-multiples of the unit of mass are placed in the other pan
until the beam is exactly balanced in equilibrium on its knife-

edge, the weight of the mass in one pan must be exactly equal
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to the weight of the mass in the other pan; for these two

weights act against each other on the lever, at points equidistant

from the fulcrum, and can, therefore, balance each other exactly

only when they are equal.

The balance thus indicates when the weights of the masses in

the scale pans are equal, and it is understood as the basis of the

process of weighing, that the masses are equal when their weights

are equal. If, therefore, we sum up the multiples and sub-

multiples of the unit of mass which must be placed in one scale

Fig. 20. Balance.

pan to balance any given body in the other pan, we get the

measure of the mass of the body, in terms of the unit of mass.

The theory of the balance, and the details of its construction,

will be dealt with more fully at a later stage. It may, however,

be noted here, in anticipation, that the central knife-edge, made

of steel or agate, rests upon a small plate or plane of steel or

agate, and that the pans are suspended from the beam by means

of an inverted stirrup arranged as shown in Fig. 20, so that a
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small steel or agate plane in the stirrup rests on a knife-edge let

into the upper edge of the beam. In this way, friction at the

fulcrum is reduced to a minimum, and the length of an arm is

determined definitely a% the distance between two knife-edges.

In all well constructed balances the arms are exactly equal,

and the three knife-edges on the beam are parallel and in the

same plane. The plane should be horizontal when the beam is

in such a position that its centre of gravity is vertically below

the central knife-edge. This position is evidently the position

in which the beam comes to rest of its own accord, if it is

allowed to swing freely on the central knife-edge after removing
the pans. It is sometimes called the zero position of the beam.

The weights of the scale pans must evidently be exactly equal

that is, the beam must balance in its zero position, with its

centre of gravity vertically below the central knife-edge, when

the pans are empty. This condition must be fulfilled before it

can be said that masses in the scale pans are equal when the

beam is balanced in its zero position.

In order to indicate the position of the beam when swinging

on its central knife-edge, a long thin pointer is attached to it as

shown in Fig. 20. This pointer moves over a scale fixed at the

base of the pillar supporting the beam, and is so adjusted that it

points to the zero of the scale when the beam is in its zero

position.

The central pillar which supports the beam can, in most

balances, be raised and lowered by means of a small eccentric

cam fixed at the base of the pillar, and worked by the small

handle shown at the front of the base board in Fig 20. When
the pillar is raised the beam swings freely on the central knife-

edge, and the balance is ready for use, but when the pillar is

lowered the beam rests on supports provided for the purpose.

In this way, the central knife-edge and the plane on which it

rests are protected from wear when the balance is not in use.

The masses used as standards in the process of weighing are
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multiples and sub-multiples of the standard unit, or some con-

venient derivative of it. They are usually called
"
weights,"

because they are used in "
weighing," and are generally arranged

in sets on a definite plan. The arrangement usually adopted is

indicated in Fig. 21, which shows a box containing a set of

weights for weighing masses up to 100 grammes. In this set the

gramme is the unit of mass, and the multiples and sub-multiples

provided include :

Fig. 21. 100-gramme box weights.

50,
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make up to the nearest milligramme any desired mass up to

1 11*111 grammes.
The gramme "weight" and all "weights" of higher denomina-

tion are generally m^e of brass, and are often gilt or nickel

plated to preserve them. The sub-multiples of the gramme are

usually made of thick sheet platinum or aluminium.

It will be seen later that the milligramme
"
weights

"
are not

much used. Milligrammes, and tenths of a milligramme, are

more conveniently determined by using a rider on the beam of

the balance as explained in Chapter xv., where the construction

and use of the balance are more fully dealt with than in this

article.
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CHAPTER VI.

VELOCITY.

24. Motion of a Material Particle. Motion may be defined

as change of position; when a body is changing its position it is

said to move or to be in motion. The motion of a body is

more conveniently studied if the motion of a material particle

is first considered.

A material particle is a particle of matter reduced to such small

dimensions that the space which it occupies is reduced practically

to a point. The position of a particle may, therefore, be

indicated by a point, and as the particle moves from point to

point it traces out a line.

When a particle moves from one point to another the line

which it follows is called a path of motion between the two

points, and the straight line joining the two points is the displace-

ment of the particle.

25. Motion of an Extended Body. An extended body

that is, a body whose dimensions extend beyond those of a

particle may be supposed to be made up of an infinite number

of material particles.

In what follows the relative positions of the particles of the

body are supposed to be fixed, so that the size and shape of the

body remain unchanged. That is, the body is supposed to be a

rigid body, and to be, as such, incapable of .any change of

configuration.

An extended body is capable of two distinct kinds of motion.

When a body moves in such a way that any straight line in it
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remains parallel to its initial position throughout the motion, the

motion of the body is said to be motion of translation.

When a body moves in such a way that it rotates round a

fixed axis, and the pa^hs of motion of all particles in it are circles

round points on the axis as centres, the motion is known as

motion of rotation.

When a body moves in any way it can be shown that its

motion at any instant is compounded of a simple motion of

translation and a simple motion of rotation, as defined above.

When a body is displaced from one position to another by

simple translation the displacement is measured by the displace-

ment of any particle in the body.

In the case of simple motion of rotation the displacement of a

body is measured as angular displacement. It is given by the

angle through which the line joining any point in the body to

the centre of its circular path of motion, rotates.

It may be seen that the displacement of a particle or a body

is a quantity which possesses direction as well as magnitude ;

that is, it cannot be specified completely without giving its

direction as well as its magnitude.

26. Velocity. When a particle is in motion it takes time in

passing from point to point in its path, and a consideration of

the time taken in passing over the distance between any two

points introduces the idea of time rate of motion, or the distance

passed over per unit of time.

The rate of motion of a particle is generally called the velocity

of the particle.

The general unit adopted for the measurement of velocity is

derived from the units of length and time, and the unit of length

per unit of time is taken as the unit of velocity. That is, if the

foot and second be taken as the units of length and time respec-

tively, the foot per second is the corresponding unit of velocity ;

or, if the centimetre and second are the units of length and time,

the centimetre per second is the corresponding unit of velocity.
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Hence, if a particle moves over a distance s units in a time t

units, the average magnitude of its velocity for the time con-

sidered is units of velocity.

In the same way if a particle, in a very short time T, taken so

as to include a particular instant in its time of motion, passes over

a very short distance
,
the average magnitude of the velocity for

g
this short interval of time is given by -, and may be taken

(if
T

is small enough) as the velocity of the particle at the particular instant

considered.

This idea of the velocity of a particle at a particular instant in

its time of motion may also be presented as the velocity of a

particle at a particular point in its path of motion. Thus, if a

particle passes over a very short distance
,
taken so as to include

a, particular point in its path of motion, in a very short time T, the

average value of the velocity of the particle for this very short

g
time is given by -, and may be taken

(if
is small enough) as

the velocity of the particle at a particular point in its path. For

example, if a particle at a particular point in its path passes over

a hundredth of a centimetre (taken so as to include the point)

in a thousandth of a second, its velocity at that point cannot

differ much from 10 cms. per second, the average magnitude of

the velocity for the interval taken. It will be understood from

what has been said above that if S and r are both infinitely small,
s

the limiting value of the ratio when 8 and T are both infinitely

small gives the velocity of the particle at the instant at which T

vanishes or at the point at which S vanishes. The direction of

the velocity of a particle at any instant is the direction in which

the particle is moving at that instant.

The velocity of a particle is said to be of uniform magnitude

when the particle passes over equal distances in equal times, no
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matter whether the times be long or short. That is, the velocity

is of uniform magnitude if the distance passed over by the particle

in any given time is directly proportional to the time. Hence,

if a particle moves witlyi velocity of uniform magnitude v for a

time t. and the space passed over by the particle be denoted by

5, we have

s = vt.

When the velocity of a particle is not of uniform magnitude
it is said to be of variable magnitude.

From what has been said it will be understood that velocity

is a vector quantity possessing direction as well as magnitude.
It is necessary, therefore, in order to specify a velocity com-

pletely to give both its magnitude and its direction. It follows,

too, that the velocity of a particle is constant and invariable only

if its direction as well as its magnitude remain unchanged. That

is, if the velocity of a particle remains unchanged it must be of

uniform magnitude, and the particle must move along a straight

line. When this is the case the velocity of the particle is pro-

perly called uniform velocity. In any other case the velocity is

variable velocity.

It has been proposed to use the term speed when velocity is

considered as a magnitude only, without reference to direction.

A velocity of uniform magnitude could then be spoken of as a

uniform speed. It seems, however, unnecessary and undesirable

to add to the number of terms already in use in this subject.

When the velocity of a particle is variable the space covered in

a given time cannot be determined by the simple relation given

above. If the velocity of the particle at any instant be denoted

by v the space passed over in a very short time, T, taken so as to

include the given instant, differs very little from VT, and the

shorter the time r the more nearly does VT give the space

covered in that time. Hence, if a particle moves with variable

velocity for a time, t, and we suppose this time to be divided

into a very large number, n, of very small equal intervals, each
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denoted by r, then when n is large enough, the space covered by
the particle in the time t is given by

s = VIT + V
2
r + v

3r . . + vnr,

where vv 2 ,
v
3

vn denote the velocities of the particles

at the middle instants of the short intervals taken in order from

the first to the %th, or last.

That is, s (#t -f i\2 -j- v
3

. . . vn)r.

But T -,
n

(V, + V + V ' Vn)
and, therefore, s . t.

n

ft)
I _,

ft]
i- -I-

ffi Q)

Now, if n is infinitely great,
- - is the

average velocity of the particle during the time t. If this average

velocity is denoted by v, we have s = vL

The investigation given above may be put in a graphical form

which is more easily followed and leads to a more definite

result.

If a curve be plotted so that the ordinate at any point

represents the velocity of the particle at the instant indicated

by that point, and the abscissa represents the time of motion

measured from a particular instant as starting point, the curve

will show how the velocity of the particle varies from instant to

instant during the time of motion.

Let CD, Fig. 22, be a velocity curve plotted in this way for

a particular case, and consider the motion of the particle for the

very short interval of time represented by ab. The velocity at

the beginning of this interval is represented by ac and at the

end of the interval by bd. If the velocity remained constant

throughout the interval at the value it has at the beginning of

the interval, the space described during the interval would be

represented by the area of the rectangle abce. The number that

4
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measures the length of etc is the same as the number which

measures the velocity of the particle at the instant indicated by
the point a, and the number that measures the length of ab is

the same as the number that measures the duration of the

interval of time it represents ;
the product of these two numbers

is, therefore, the number that measures the area of the rectangle

abce contained by ac and ab, and also the space passed over by
a particle moving with a uniform velocity represented by ac for

a time represented by ab. This space is, therefore, represented

by the area of the rectangle in the usual way; that is, the

number that measures the one is the same as the number that measures

the other.

o A a b B x

Time

Fig. 22.

Similarly, if the velocity of the particle were the same

throughout the interval as it is at the end of the interval, the

space passed over during the interval would be represented by
the rectangle abdf.

Now the space actually passed over during the interval must

be less than that represented by abdf and greater than that

represented by abec, and the difference between each of these

extreme values and the space represented by the strip abdc can

be made as small as we please by making ab small enough.

Hence, when ab is small enough the space actually passed over

by the particle in the short time represented by ab is represented
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by the area of the strip abed which stands on ab as its base, and

is bounded along cd by the portion of the curve intercepted

between the ordinates ac and bd which form its sides.

It follows from this that if we consider the motion of the

particle for any finite time represented by AB, the space passed

over in that time must be represented by the area ABDC which

lies between the ordinates AC and BD, and is bounded by the

curve along CD. The time represented by AB may be divided

into a very large number of small equal intervals similar to that

represented by ab, and if AB be divided into a corresponding

number of short equal lengths, the space passed over in each

interval is represented by the area of the strip similar to abec

which stands on the length which represents it. The total space

passed over must, therefore, be represented by the area ABDC,
which is made up of all the strips which stand on the short

lengths into which AB is divided.

It will be seen that if AE, the height of the rectangle ABFE,
shown 'in Fig. 22, is such that the area of the rectangle is equal

to the area ABDC, then AE is the mean or average of the

ordinates between A and B and represents the average velocity

denoted by v above.

When a body moves with motion of translation, the velocity

of the body at any instant is the velocity of any particle in it at

that instant.

Since velocity is a vector quantity, velocities may be com-

pounded or resolved by any of the rules for compounding or

resolving vector quantities. The application of the parallelo-

gram and triangle rules to the composition and resolution of

velocities, gives rise to the theorems known as the parallelogram

of velocities and the triangle of velocities. These theorems are

merely the statement of the general rules for vectors with

specific relation to velocities.

Numerical Examples. 1. A bullet is projected horizontally from

the top of a tower, and as it falls its velocity at a certain instant is



52 GENERAL PHYSICS.

known to be made up of a horizontal component 80 feet per second in

magnitude, and a vertical component 64 ft. per second in magnitude.
Find its velocity.

Here, if we take AB, 80 units long, to represent the horizontal

component, and AC, 64 units long, to represent the vertical com-

ponent, and then complete the rectangle ABDC, as in Fig. 23, the

diagonal AD, drawn from A to D, represents the resultant of the two

components, and gives the magnitude and direction of the velocity of

the bullet at the instant considered.

If the figure is drawn carefully to scale, and the length of AD
measured, it will be found to be about 102-4 units long. The magni-
tude of the velocity is, therefore, 102-4 feet per second, and its

direction is such that it makes an angle BAD with the horizontal.

This angle can be measured with a protractor, and the velocity of the

bullet at the instant considered, can then be fully specified.

B B

Fig. 23.

Instead of adopting a graphical method the magnitude of the-

velocity can be calculated by the relation, Rr P- given in

Art. 9. We get

and, therefore,

R2 = 802 + 64-,

R - 102-45.

The angle BAD can also be specified mathematically. From the

figure it will be seen that t = tan BAD ; that is, tan BAD =
-t>A 80

= = ; or, BAD is an angle whose tangent is -

The magnitude and direction of the velocity of the bullet at the

given instant are thus completely determined.

2. A bullet is fired from a rifle in a direction making an angle of

30 above the horizontal. At the instant the bullet leaves the muzzle

of the rifle its velocity is 1,000 feet per second, find the magnitude of

the horizontal and vertical components of this velocity.
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Let AB, Fig. 24, represent the velocity of the bullet in magnitude
and direction. Construct on AB as diagonal the rectangle ACBD
with the side AC horizontal and the side AD vertical. The sides AC
and AD now represent, respectively, the horizontal and vertical

components of the velocity represented by AB.
The lengths of AC and AB can now be found in several ways.
If the figure is drawn accurately to scale the lengths can be

measured directly. If this is done it will be found that AC is about

866 units long, and AD 500 units long, indicating that the horizontal

component is about 866 ft. per sec., and the vertical component
500 ft. per sec.

From the geometry of the figure it is easily seen that

AB = !

=, or AC = AB . .N/^ = 500 V3 = 866'025.
AC v/3 2

and,

|g~p or AD = AB. \= 500.

That is, the horizontal component is 500 V3 ft. per sec., or 866 '025 ft.

per sec., and the vertical component is 500 ft. per sec. The same

result is obtained more concisely and expeditiously if we apply the

relation given in Art. 9. If P be taken to denote the horizontal

component, and Q the vertical component in feet per second, we have

at once

P = R cos = 1,000 . cos 30 = 1,000. = 500 \/3,

and

Q = R sin a = 1,000 . sin 30 = 1,000 x i = 500.

That is, the horizontal component is 500 vl ft. per sec., and the

vertical component is 500 ft. per sec.

27. Relative Velocity. The velocity of a point B relative

to a point A is the rate at which the point B changes its position

relative to A.

If the two points are in motion with the same velocity there

can be no change in their relative position, and the velocity of

one relative to the other is zero.

If, however, the points are in motion with different velocities,

the velocity of one relative to the other depends upon the

magnitude and direction of their individual velocities.
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Let the velocity of the point A in Fig. 25 be represented in

magnitude and direction by AP, and the velocity of the point

B by BQ. Now, the velocity of B relative to A will not be

affected if we impress the same velocity on the two points.

Imagine, therefore, a velocity equal and opposite to the velocity

of A to be impressed on each point, and let this velocity be

represented in magnitude and direction by AE for the point A,

and by BE, for the point B. It will be seen from the figure

that the result of this is to reduce the point A to rest, and to

give the point B a velocity compounded of the velocities repre-

Fig. 25.

sented by BE and BQ. This velocity of B is represented in the

figure by BS, and is evidently the velocity of B relative to A,

for the point A is now at rest.

That is, the velocity of a point B relative to another point A
is a velocity compounded of B's actual velocity and a velocity

equal and opposite in direction to A's velocity.

It will be seen at once by drawing a figure that the velocity

of A relative to B is equal and opposite in direction to the

velocity of B relative to A.

If the points A and B move along the same line, and if velocity

is considered to be positive for one direction along the line, and
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negative for the opposite direction, the velocity of B relative to

A is evidently obtained by adding A's velocity with its sign

changed to B's velocity that is, by subtracting A's velocity fron^

B's velocity.

What has been said above with reference to the relative

velocity of two points applies also to the relative velocity of any

two bodies moving with motion of translation.

Examples. 1. Two bodies A and B move along the same straight

line with uniform velocities ; the velocity of A is 20 ft. per sec., and

the velocity of B is 15ft. per sec., find the velocity of B relative to A
when the bodies move (1) in the same direction, (2) in opposite

directions.

Here if we take velocity in the direction in which A moves to be

positive we get the following results :

(1) The velocity of B relative to A, when A and B are moving in

the same direction is given by (15
-

20) ft. per sec. or - 5ft. per sec.

That is, B's velocity relative to A is 5ft. per sec. in a direction

opposite to that in which A (and in this case B also) is moving. This

means that if B is in front of A, B is getting nearer to A at the rate

of 5ft. per sec., or if A is in front of B, B is getting further away
from A at the rate of 5 ft. per sec.

(2) The velocity of B relative to A when A and B are moving in

opposite directions is given by (
- 15 - 20) ft. per sec. or - 35ft. per

sec. That is B's velocity relative to A is 35ft. per sec. in a direction

opposite to that in which A is moving.
If we suppose the two bodies A and B to be two trains, the velocity

of B relative to A obtained as above is the velocity which the train B

appears to have to a passenger on A who looks only at the train B.

2. A steamer, A, travelling due north at a speed of 15 knots passes

another steamer, B, travelling due east at a speed of 20 knots. Find

the velocity of the steamer B relative to the steamer A.

The velocity of the steamer B relative to the steamer A is the

velocity obtained by compounding B's velocity with a velocity equal

and opposite to that of A.

Hence, if BE in Fig. 26 represents B's velocity in magnitude and

direction, and BS similarly represents a velocity equal and opposite

to A's velocity. BR will, by the parallelogram of velocities, represent

the velocity of B relative to A.

Since BE and BS are respectively 20 units and 15 units in length,

and the angle EBS is a right angle, it follows that BR2 = BE2 + BS2
.
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That is,

or
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BR2 = 202 + 152 = 625

BR = 25.

The velocity of B relative to A is therefore 25 knots in the direction

represented by BR. This direction lies between S.E. and E.S.E.,

making an angle of nearly 37 with BE.

That is, to a passenger on board the steamer A, the steamer B
appears to move away from him in a direction between SE and ESE
with a speed of 25 knots.

It will be understood that all the velocities with which we

Fig. 26.

have to deal are relative velocities. When we speak of the

velocity of a body we mean its velocity relative to some point at

rest on the earth's surface. Motion and rest are in fact relative

terms, and the use of either term implies the existence of some

point of reference expressed or understood. We cannot specify

the absolute position of a point in space, and cannot therefore

attach any real meaning to the terms "
absolute velocity

"
and

"
absolute rest

"
which are sometimes used.
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CHAPTER VII.

ACCELERATION.

28. Acceleration. When the velocity of a particle changes,

the time in which any given change takes place depends upon

the time rate at which the velocity changes from instant to

instant.

The rate of change of velocity, or the change of velocity per unit

of time is called acceleration. The unit of acceleration is unit

change of velocity per unit of time. Thus, if a foot-per-second

is the unit of velocity, a change of velocity at the rate of a foot-

per-second per second is the corresponding unit of acceleration.

Similarly, if a centimetre-per-second is the unit of velocity a

change of velocity at the rate of a centimetre-per-second per

second is the corresponding unit of acceleration.

Acceleration as here denned evidently applies to rate of

decrease of velocity, as well as to rate of increase of velocity.

Sometimes the term acceleration is limited to the rate of increase

of velocity, and the term retardation is adopted for rate of

decrease of velocity. It is, however, more convenient to use

only the one term acceleration, and to consider retardation as

negative acceleration.

In determining change of velocity it must be remembered

that velocity is a vector quantity, and that a change of velocity

may involve a change of direction as well as a change in

magnitude. Change of velocity must, therefore, be found by

applying the rule for finding the difference of two vector

quantities.
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It is convenient, however, to consider separately the two cases

in which change of velocity involves (1) a change in magnitude
without change of direction, and (2) a change in direction with

or without a change of magnitude.

The first case, in which the velocity of a particle changes in

magnitude without changing in direction, is evidently a special

case in which the particle moves without change of direction

along a straight line. In this case the velocity at any instant is

always in the same direction, and the difference of the velocities

at the beginning and end of any interval of time gives the

change of velocity in the time. Hence if u denote the velocity

of the particle at any instant, and v the velocity at an instant

t units of time later, the change of velocity in the time t is given

by (v u), and the average rate of change of velocity, or average

change of velocity per unit of time during this time is given by

-. That is,
- is the average acceleration during the

t t

time t.

In the same way, it follows that if the velocity of the particle

at any instant is
,
and it changes in a very short time T to u

,

then - - is the average acceleration for the very short interval

of time r, and if T is small enough the value of - - may be

taken as the acceleration of the particle at the particular instant

considered. For example, if the velocity of a particle at any

instant is 10 cms. per second, and a thousandth of a second later

it is lO'Ol cms. per second, the change of velocity in '001 second

is '01 cm. per second, and the average acceleration during this

short interval is-, or 10 cms.-per-second per second. Now,

the acceleration at the instant first considered cannot differ

much from this value, for the interval of time taken is too short

to allow of much change, and it is clear that the shorter the
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interval is, the more exactly will the average acceleration for the

interval give the acceleration at the particular instant considered.

The acceleration of a particle, in this case, is said to be of

uniform magnitude when equal changes of velocity take place

in equal times, however long or short the times may be. That

is, the acceleration is of uniform magnitude when the change

of velocity in any time is directly proportional to the time.

Hence, if a particle moving in a straight line is subject to an

acceleration of uniform magnitude a, the change of velocity

which takes place in a time t is given by at. That is, if the

velocities at the beginning and end of a time t are denoted by
u and v respectively, we have

v u at.

or, v = u + at.

In this case an acceleration of uniform magnitude may be

said to be a uniform acceleration, for, since there is no change

of direction to be considered, the acceleration is constant and

invariable in magnitude and direction.

The direction of the acceleration in this case must evidently

be along the line of motion, and will be in the same direction

as the motion of the particle, or in the opposite direction,

according as the motion is accelerated or retarded. If the motion

is accelerated the velocity is increased, and the acceleration is

positive in sign, but if the motion is retarded the velocity is

decreased, and the acceleration is negative in sign.

The second case, in which the velocity of a particle changes in

direction with or without a change of magnitude, is evidently

the general case in which the particle moves along any line.

In this case the direction of the velocity changes from instant to

instant, and the difference of the velocities at any two given

instants must be determined by the rule for vectors. It will be

seen, too, that the acceleration may also change in direction

from instant to instant, so that we cannot find the average
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acceleration for any interval of time by dividing the change of

velocity in that time by the time. As a general rule, we can

deal only, in this case, with acceleration at an instant. Thus,

in Fig. 27, let AB represent the velocity of the particle, in

magnitude and direction, at a particular instant, and let AC
represent its velocity, similarly, at an instant a very short time

later, then by the triangle rule given in Art. 8, BC represents

the change in velocity during this very short interval of time.

If, now, the magnitude of this change of velocity be denoted by

S, and the very short interval of time in which it takes place

by T, then S/r denotes the average acceleration for this short

interval of time, and may be taken, if T is small enough, to give

the acceleration of the particle at the instant when the velocity

of the particle is represented by AB. The direction of this

Fig. 27.

acceleration is then represented by the direction of BC. The

acceleration at any instant, obtained in this way, may evidently

vary in magnitude and in direction from instant to instant;

that is, the acceleration is. in general, variable. If, however, the

magnitude remains constant, the acceleration is said to be of

uniform magnitude, and if both magnitude and direction are

constant and invariable from instant to instant, the acceleration

is called uniform acceleration, as in the case considered above.

A particle which is not moving in a straight line may evidently

be subject to uniform acceleration, for this merely means that

the velocity of the particle is changing at a uniform rate in a

constant direction which is not at any instant the same as that

in which the particle is moving.

It should be noted that acceleration possesses direction as well

as magnitude, and is, therefore, a vector quantity. Accelerations
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may therefore be compounded and resolved by the usual rules

for vector quantities. The theorems known as the parallelogram

of accelerations, the triangle of accelerations, and the polygon of

accelerations deal merely with the application of these general

rules to the special case of accelerations.

29. Uniformly Accelerated Motion in a Straight
Line. The motion of a particle along a straight line with

uniform acceleration is a case of special importance.

If a particle starts from rest and moves for a time t subject

to a uniform acceleration a, it evidently gains a units of velocity

every unit of time during the motion, and, therefore, acquires

a velocity at at the end of the time. That is, if v denote its

final velocity, or its velocity at the end of the time considered,.

we have

v = at.

Similarly, when a particle moves with uniform acceleration a

along a straight line, and we consider its motion for any interval

of time t during the motion, it will be seen that if u denote its

initial velocity, or its velocity at the beginning of the time, and *r

its final velocity, or its velocity at the end of the time, we have

for the velocity is increased by a units of velocity every unit of

time, and, therefore, gains at units in the time t.

It will be seen, too, that since the velocity of a particle moving
with uniform acceleration in a straight line changes uniformly

with time, its mean or average value for any interval of time is

the arithmetic mean of its initial and final values for the interval

considered, and is equal, also, to the actual velocity of the particle

at the middle of the interval. Thus, let u denote the initial

velocity of the particle at the beginning of the time
t, and

imagine this time to be divided into n equal intervals, each equal

to -
: then, if a denote the uniform acceleration to which the

n
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particle is subject, the successive velocities of the particle at

successive instants, taken from the beginning of the time at

equal intervals, each equal to -, are given by

t 2t 3
u. u + a -

,
u -\- a

,
u -\- a . . . u + at.

n n 11

These velocities form an arithmetical progression of (n + 1)

terms, however large n may be, and their sum by the usual

algebraic rule for the summation of a series in arithmetical

progression is {u + (M + at)} ^
The mean or average of

ithese velocities is, therefore,
-

,
and if n is supposed to

2i

be infinitely great, this is evidently the mean or average velocity

jof the particle for the time t in the sense explained in Art. 26.

The mean or average velocity of the particle for the time t is

thus the arithmetic mean of u, and (u -f- at) the initial and final

velocities of the particle for the time, and its value is, therefore,

.equal to u + 9 ,
which is the actual velocity of the particle at

the middle of the time.

The space passed over by the particle in any given interval of

time can now be readily found. For if v denote the average

velocity of the particle for any time t
f
then the space or distance

passed over in this time is given by s = t't as explained in

Art. 26.

If the particle starts from rest and moves with uniform

.acceleration a in a straight line for a time t, the average

velocity of the particle for the given time is J at, and the space

,or distance passed over in this time is given by

s = (i at)t,

4or s =
|-

at2 .

Similarly, if the particle at any instant has an initial velocity
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u, and moves in a straight line with uniform acceleration a for

a time /, its average velocity for the time is (u + J #0> an(^ ^he

space passed over in the time is given by

or s = ut 4- 2
rt^2>

The graphical method explained in Art. 26 can easily be

applied in this case. The velocity increases uniformly with the

time of motion so that the curve showing how the velocity

varies with the time is a straight line. If the time of motion is

measured from rest, the straight line passes through the origin

as shown in Fig. 28, where 0V represents this velocity curve.

From this figure it will be seen that if OA represents a time t

A Time B X

Fig 28.

from rest, the space passed over in this time is represented by
the area of the triangle OAC that is, by |-

OA . AC. Now OA
represents the time t and AC represents the velocity, at, acquired

by the particle in the time
t, so that the space passed over in the

time t from rest is given by

s i . t . at, or s = -i at
2

.

Similarly, it can be seen that the space passed over in any
interval of time t, represented by AB, is represented by the

area ABDC. Now, if CE be drawn parallel to AB and cutting

BD in E, it can be seen from the figure that

ABDC = ABEC + CED,
and the area of ABDC = AC . AB + -J

AB . DE.
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In this relation the area of ABDC represents the space passed

over in the time t, AC represents the initial velocity of the

particle at the beginning of the time t, and DE represents the

additional velocity, at^ acquired by the particle in the time t.

Hence, it follows that

s = ut + -i- . t. at,

or s ut + -J
af.

The same result might have been obtained by writing

The area ABDC = - -
. AB, which indicates that

_ u + (it + at)

~Y~ ~'
'

or s = ut + J at'\

as before.

In applying these formulae it must be remembered that the

quantities denoted by s, u, v, a. and
t,
must be expressed in con-

sistent units. That is, for example, if the centimetre and second

are taken as the units of length and time respectively, the unit

of velocity must be the centimetre-per-second and the unit of

acceleration the centimetre-per-second per second. It must be

remembered, too, that the sign of a must be taken positive or nega-

tive according as the motion is accelerated or retarded. Or, more

generally, if the direction in which the particle is moving along

the line at any instant be taken as the positive direction, the

opposite direction along the line must be taken as the negative

direction, and this sign convention must be taken to apply to all

the quantities involved in any formula.

Numerical Example. For example, if a particle moving in a

straight line subject to a uniform acceleration of 20 cms. per sec. per

sec. in a direction opposed to that in which it is moving, has, at a

particular instant, a velocity of 45 cms. per sec., find (a) the velocity

of the particle 5 seconds later, and (ft) the distance passed over iu this

interval of 5 seconds.
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(a) Here, by applying the relation,

v = u + at,

we get v = 45 -j- (
- 20) 5 ;

or v = 45 - 100 = - 55.

That is, the particle at the end of the given interval of 5 seconds is

moving with a velocity of 55 cms. per sec. in a direction opposite to

that in which it was moving at the instant first considered.

(b) Here, by applying the relation,

a = ut + & at-,

we get a - 45 x 5 + & (
-
20) 25 ;

or s = 225 - 250 - -25.

This result means that at the end of the 5 seconds the particle is

25 cms. from its starting point (at the beginning of the 5 seconds)

measured in a direction opposite to that in which it was then

moving.
In the formulae given above s gives the space or distance passed over

so long as the particle moves in the same direction throughout the

time considered. In this case, however, the particle evidently moves

for 2J seconds in the initial direction until its initial velocity is

reduced to zero ; it then turns back and moves for 2| seconds in the

opposite direction. It will be found, by working out the results, that

during the first interval of 2| seconds the particle moves over 50 "625

cms. in the positive direction, and during the remaining 2| seconds it

moves over 75*625 cms. in the negative direction, so that at the end

of the 5 seconds it is (75 '625
-

50'625) cms., or 25 cms. from the

starting point in the negative direction.

It is sometimes convenient to eliminate t from the formulae

a = \ af2 and v = at

and also from

s = ut x at2 and v u + at.

In the first case we get

>-
2 = a?t2 = 2 a . | af = 2 as,

or v- = 2 as
;
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and in the second case,

/;- = u* + 2 uat + a-t'
2

;

or f>
2 = if- + 2 a (ut + ^ at-) ;

or v2 = u2 + 2 as.

These results are useful when the relation between v, r, a, and

s is required.

When a particle moves from rest with uniform acceleration in

a straight line the characteristics of the motion are concisely

expressed by the two formulae

v = at, . . . (1)

s = J at\ . . . (2)

which are given above.

Fig. 29.

In these formula? a is a constant, and they, therefore, indicate

(1) That the velocity acquired by the particle during any
time measured from the instant of starting is directly pro-

portional to the time.

(2) That the space passed over by the particle in any time

measured from the instant of starting is directly propor-

tional to the square of the time.

The motion of a particle moving with uniform acceleration in

a straight line may be studied experimently by the method of

the following experiment :

Experiment 1. Set up a long inclined plane (with a V-groove cut

along its length) at a small angle with the horizontal, so that a large

steel bearing ball will roll slowly down the plane along the groove.
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A scale should be fixed on the plane, parallel to the groove, as shown
in Fig. 29, so that the position of the ball can be read at any instant

during its motion down the plane. The motion of the ball down the

plane is a rolling motion compounded of motion of rotation and

motion of translation, but the particle at the centre of the ball

evidently moves in a straight line down the plane. Now adjust a

metronome to tick half seconds or use a clock which ticks half seconds

distinctly, and follow the motion of the ball down the plane in the

following manner.

Let the ball rest in the groove, supported by a small block of wood,
with its centre opposite the zero of the scale. At a particular tick of

the clock or metronome remove the block suddenly away from the

ball so as to let the ball begin at this instant to roll down the plane.

Then follow the motion of the ball down the plane, and at every

750

75"

(Seconds)
20

Fig. 30.

-successive tick read off its position on the scale. If this operation is

repeated several times it will be found that, with practice, perfectly

consistent readings may be obtained. The inclination of the plane to

,the horizontal should be small, in order that the motion of the ball

may be slow.

Record the readings obtained in this way and then plot from the

readings a smooth curve, showing how the distance travelled by the

ball from rest varies with the time of motion.

A curve similiar to that shown in Fig. 30 will be obtained. If this

.curve is examined it will be found that the ordinate at any point

representing the distance travelled from rest, is proportional to the

square of the abscissa representing the time of motion. That is, the

distance travelled from rest is directly proportional to the square of

the time of motion, and the centre of the ball moves down the plane
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with uniform acceleration in a straight line. If we now apply the

relation, s = 4 ^> the value of a can be determined by substituting

in the relation values of s and t obtained from the co-ordinates of any
suitable point on the curve.

The velocity of th centre of the ball at any instant, can also be

deduced from this curve. Let ab, in Fig. 31, represent any very
short interval of time during the motion of the ball down the plane.

Then de, the difference of the ordinates ac and bd, evidently repre-

sents the distance passed over in the short time represented by ab.

Hence if we divide the distance represented by de by the time repre-

sented by ab, we get the average velocity of the ball during the short

interval of time represented by ab, and this average velocity may be

taken as the actual velocity at the middle of the interval.

Time

Fig. 31.

(Seconds)

If therefore we divide the whole time of motion into a number of

consecutive short intervals similar to that represented by ab, and plot

at the middle point of the short length representing each interval,

an ordinate representing the velocity at the middle of the interval, as

obtained above, we obtain a curve which shows how the velocity of

the ball varies with the time of motion.

The curve obtained in this way is known as the velocity curve. In

this case it is a straight line, as shown in Fig. 31. This means that

the ordinate at any point on the line is directly proportional to the

abscissa, and indicates, therefore, that the velocity of the ball at any
instant is directly proportional to the time of motion from rest. If

we apply the relation v = at to this line the value of a is readily found

by substituting in the relation the values of v and t given by the

co-ordinates of any point on the line, and then calculating out the
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value of a. This value should agree with the value obtained from the

space curve by the help of the relation s = J a 2
.

In plotting the velocity curve it will generally be found sufficient

to divide the time of motion into half second intervals, and it will be

necessary to plot the ordinates on a larger scale than those of the

space curve.

30. Acceleration due to Gravity. When a body falls

freely from rest it falls vertically in a straight line, and it is

found that the distance travelled from rest in any time is

directly proportional to the square of the time. This shows,

that a body in falling is subject to uniform acceleration directed

vertically downwards along the line of fall. This acceleration

is known as the acceleration due to gravity. Its value differs

slightly at different points on the earth's surface, but

for places in Great Britain it may be

taken for ordinary purposes, as 32 -

2_

feet-per-sec. per sec., or 981*2 cms.-per-sec.

per sec. That is, a body falling freely in

vacuo (so as to be free from air resistance)

is subject to a uniform increase of velocity

at the rate of 3 2 -2 feet-per-sec. per sec., Fig 32

or 981 centimetres -
per

- sec. per sec.

Similarly, if a body is projected vertically upwards it is

subject to a decrease of velocity at the same rate. The

direction of the acceleration due to gravity is vertically down-

ward, and so causes acceleration of downward motion and the

retardation of upward motion.

When a body is projected horizontally or in any direction it

is still subject to the acceleration due to gravity that is,

the change in its velocity from instant to instant, as explained in

Art. 28, always takes place in the same direction and at the same

rate. Hence, if the velocity of the body can be represented at a

given instant by AB (Fig. 32), and by AC at an instant t units of

time later, then BC, which represents the change of velocity in
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the time t, will be directed vertically downwards, and if this

change of velocity be denoted by v, then - will give the acceler-

ation* due to gravity.
-

In the same way, if the velocity of the body at any instant is

represented by AB, the velocity at any instant t units of time

later is given by compounding with the velocity represented by

AB, a velocity represented by BC, taken in a vertical direction

and equal to gt, where g denotes the acceleration due to gravity.

The acceleration due to gravity is usually denoted by g, and

the formulae of the foregoing article, when applied to the motion

of bodies subject to this acceleration, are usually written with g

instead of a, so that we have

1} = gt, or v = u + gt,

and, s = 4 gfi, or s = ut -\- J gt'
2

.

It will be understood in applying these formulae that g must

be taken as positive or negative according as the positive direction

of motion is taken vertically downwards or vertically upwards.

The value of the acceleration due to gravity at any place is

determined best by the pendulum method explained in Art. 34.

It can, however, be determined roughly by direct methods.

The chronograph described in Art. 19 may, for example, be

adjusted to record electrically the time taken by a suitable body,

such as a steel ball or a bullet, in falling from rest through a

known distance. Then if 5 denote the distance, and t the time

recorded by the chronograph, we have s = J gt
2
,
and from this

relation g can be determined.

A common form of this method in which the time record is

traced by the tuning fork on the falling body itself is described

below.

* It should be noted that in this case gives the acceleration whether
t

t be large or small, because the acceleration is uniform in magnitude and

direction. See Art. 28.
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Experiment 2. Arrange, as shown in Fig. 33, that a long strip of

plate glass, G, falls vertically between guides in such a way that as it

falls past the end of the tuning fork T, a short bristle on the end of

one of the prongs traces, when the fork is in vibration, the usual

wavy trace on the smoked surface of the glass.

The trace need not be taken from the starting point of the strip's

fall. It is better to let the strip fall from a point as far as possible

above the fork, and to let the trace be taken at the end of the fall

where the strip is moving very rapidly. An indiarubber pad should

be arranged to receive the strip at the end of its fall.

The acceleration due to gravity
can now be calculated from data

given by the trace on the strip of

glass in the following way.
Measure off on the trace the

lengths of two consecutive portions

each containing the same number

of complete waves. These lengths

evidently give the distances through
which the plate falls in two conse-

cutive equal intervals of time.

Let dj and d2 denote these

distances, and let t denote the

duration of the equal intervals of

time. Then, d^/t is the average

velocity of the plate during the

first interval, and gives, therefore,

the actual velocity of the plate at

the middle of this interval.

Similarly, d2/t gives the actual

velocity of the plate at the middle

of the second interval.

A change of velocity,
~ l

, therefore, takes place in the interval

between the middle of the first interval and the middle of the second

interval ;
this interval is itself equal to t, and the rate of change of

velocity, or the acceleration of the plate is, therefore, given by

Now, t is equal to p(n seconds, if p denote the number of
6

complete waves in each of the measured portions of the trace, and

n the number of vibrations per second made by the fork.

Wo, therefore, have
(do - di) n-

Fig. 33.
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The best method of getting an accurate result from a good trace by
this method of calculation is as follows.

Number the wave lengths on the trace from crest to crest, from

1 to 50, using a fine needle point to write the numbers on the smoked

surface. Then find a "number of values of d and d.2 for intervals

corresponding to the time of twenty vibrations of the fork, by making
the measurements indicated in the table given below.

4.
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CHAPTER VIII.

CIRCULAR MOTION AND
SIMPLE HARMONIC MOTION.

31. Angular Velocity. In considering the motion of rotation

of a body, the body is supposed to be rigid that is, the particles

which make up the body are supposed to be fixed in position

relative to each other, and not subject to any relative displace-

ment such as might be produced by any deformation of the body.

When a rigid body rotates round any straight line as axis,

every particle in the body moves in a circle round a point in

the axis as centre, and the angular velocity of the rotation is

measured by the angle which the radius joining any particle

to the centre of its path of motion, describes per unit of time.

This angle is evidently the same for every particle in the body,

and is always expressed in circular measure.

Hence if the angular yelnfiit.y of a rotating body is denoted

by jjjj^jthe Bangle which the radius joining any particle at a

distance r from the axis, describes in a very short time r, is wr,

and since this angle is expressed in circular measure, the arc

over which the particle moves is given by rtor or (rw)r. That

is, the particle moves over a distance (rw)r in a very short time

r, and its linear velocity is therefore given by rw, where r denotes

the distance of the particle from the axis of rotation, and

(u denotes the angular velocity of the body. The linear

velocity of any particle in the body is thus directly proportional

to its distance from the axis of rotation.

If a rotating body rotates through an angle (circular
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measure) in a time t, then 0/t gives the average angular velocity

for the time t.

If at any instant the body rotates through a very small

angle ,
in a very short time T (taken to include the instant

considered), then <5/r gives the angular velocity of the body
at the instant considered.

If the body rotates through equal angles in equal times,

however long or short the times may be, the angular velocity

is uniform, and the angle described by the body in any time

t is given by = wt, where w denotes the uniform angular

velocity of the body.

Angular acceleration bears the same relation to angular

velocity as linear acceleration bears to linear velocity. It may
be defined as the rate of change of angular velocity, or the

change of angular velocity per unit of time.

32. Motion in a Circle. When a particle moves round a

circle with a velocity of uniform magnitude it is subject to

acceleration, for, although the magnitude of the velocity is

constant, its direction changes continuously from point to point

on the circle.

Imagine a particle to move round the circle PQ, Fig. 34, with

a velocity of uniform magnitude v
t
and suppose it to move over

any very short arc in a very short time r. The direction of the

velocity of the particle at the point is along the tangent to the

circle at that point. Hence, if PR represent the direction of

the tangent at P, and QS the direction of the tangent at Q, the

velocity of the particle is, at P, along PR, and at Q, along QS,

so that the direction of its velocity changes through the very

small angle POQ in the very small time r, in which it passes

from P to Q.

In Fig. 35, let the velocity of the particle be represented in

magnitude and direction by AB at the point P, and by AC at

the point Q. The change of velocity which takes place in the

very short time r, as the particle moves from P to Q, will then
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be represented in magnitude and direction by BC as explained

in Art. 28.

Since AB and AC are equal, each being v units in length, and

the angle BAG, being equal to the angle POQ, is very small,

the line BC is practically coincident with the arc of a circle

described with centre A and radius AB or AC.

Hence, if the angle BAG be denoted by a, in circular measure,

the length of BC is measured by va, and the change of velocity

represented by BC is also measured by va. That is, the change

of velocity which takes place as the particle moves from P
to Q, in the time T, is measured by va, and the average

Fig. 34.

magnitude of the acceleration for this short interval of time is

measured by .

Now the angle POQ, in Fig. 34, is equal to the angle BAC,
a .

which is denoted by a. and it will be seen that is the angular
T *

V

velocity of the particle round O, and is therefore equal to -

where r denotes the radius of the circle. The average acceleration

v2

of the particle for the time T is therefore given by, for

a v v
v .

- - = v .
-

.

r r r
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This is the average value of the acceleration of the particle

for any very small interval of time, so that if the interval of

time be assumed to be infinitely small, it gives the value of the

acceleration at any instant during the motion of the particle.

The acceleration of the particle is thus of constant magnitude

for since v and r are both constant must be constant.
r

The direction of this acceleration can also be determined from

Fig. 35. It will be seen that when the interval of time r is

infinitely small, the angle BAG is infinitely small, and the

direction of BC is at right angles to AB and AC. This indicates

that when the particle is at P, and the direction of its velocity

is along the tangent PR, the direction of its acceleration is

along the radius PO towards the centre of the circle. That is, the

acceleration of the particle, at any point in its path, is directed

towards the centre of the circle along the radius at that point.

Hence, when a particle moves in a circle of radius r, with a

velocity of constant magnitude v, it is subject to an acceleration

02
of constant magnitude directed towards the centre of the circle,

at all points in its path.

33. Simple Harmonic Motion. Let P, Fig. 36, be any

point on the circumference of the circle APB, and AB any

diameter of the circle. From P draw Pp perpendicular to the

diameter AB and meeting it at the point p. This point p is

the projection of the point P on the diameter AB. For

different positions of the point P on the circumference of the

circle, the point p will have different positions on the diameter

AB, for the point p will in all positions be the foot of the per-

pendicular from P on to the diameter.

Now, imagine the point P to move round the circumference of

the circle with uniform speed, and consider the corresponding

motion of the point p along the diameter AB. It will be seen

that as P moves round and round the circle the point p moves
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backwards and forwards along the diameter AB, making a com-

plete backward and forward movement for each complete revolu-

tion made by P. The point P makes a complete revolution from

any starting point on the circumference of the circle every time

it passes through the starting point ;
the point p, therefore, raake&

a complete backward and forward movement from any starting

point on the diameter every time it passes through the starting

point in the same direction as it had at the instant of starting.

Thus when P moves round the circle from B through Q, A, and

Q' back to B, the pointy moves along the diameter AB from Br

through to A, and back through to B. Or, as P moves from

Q. through A, Q.' and B, back to Q, the point p moves from to

A, back through to B, and then back to again.

The point j?, moving in this way, is said to move with simple

harmonic motion along the line AB. That is, if a point moves

round the circumference of a circle with uniform speed, the pro-

jection of this point on any diameter of the circle moves back-

ward and forward along the diameter in simple harmonic motion.

The point P moves round the circle with uniform speed, and,,

therefore, describes each complete revolution in the same time.

The point p makes a complete backward and forward movement

for each complete revolution made by P, and must, therefore,,

describe each complete movement in a definite constant period

of time equal to the time occupied by P in making one complete

revolution. This period of time is known as the period of the

motion. In the case of a point moving in simple harmonic

motion the period of the motion may, therefore, be defined as

the time occupied by the point in making one complete back-

ward and forward movement.

The line AB along which the pointy moves in simple harmonic

motion is the path of the motion, and O is the middle point or

centre of this path. The distance OA or OB is, therefore, the

greatest distance the point travels from during its motion,

This distance is called the amplitude of the motion.
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The distance of a point in simple harmonic motion from the

centre of its path is sometimes called the displacement of the

point. If this term is used, the amplitude of the motion may be

defined as the maximum^ displacement of the point during the

motion.

The displacement at any instant of a point in simple harmonic

motion may be expressed in terms of the period and amplitude

of the motion. Thus, in Fig. 36, if w denote angular velocity of

-the point P round 0, and if we suppose the point P to start from

Q, and to take a time t to travel from Q to P, the angle POQ
>will be denoted by wt, and the displacement, Op, of the point p

by OA sin ut. For in the figure we have ~ = sin OPp or

Op = OP sin OP/;. But OP = OA, and OPp = POQ = M t, and,

therefore, Op == OA sin tot.

Now, if r denote the amplitude and t the period of the motion,

2?r 27r
we have OA = r and T = or co = fr . It follows, there-

to

fore, that

. 2irt

Op r sin .

This result shows that during a complete period that is, as t

.changes from to T the displacement OP varies in the same
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way as the sine of an angle varies as the magnitude of the angle

changes from to 2?r. This law of the variation of the displace-

ment with time during each complete period is the characteristic

of simple harmonic motion.

If we plot a curve showing how the value of r sin -=- varies with

^, the ordinate of the curve gives the displacement, Op, of the

point p at any instant during the motion, and the curve, shown

in Fig. 37, is called the displacement curve. It is readily plotted

in any particular case by finding graphically, as in Fig. 36, the

values of Op for a number of successive positions of the point P,

and then plotting these values as ordinates and the corresponding

Time

Fig. 37.
%

values of t as abscissae. The curve is similar in form to the curve

showing how the sine of an angle varies with the angle, and is

sometimes called the sine curve or the curve of sines.

The velocity of the point p at any instant is evidently the

component of the velocity of P in a direction parallel to AB.

Thus, in Fig. 38, if the velocity of P is represented by PT the

velocity ofp will be represented by PR. That is, if the velocity

of P is denoted by v the velocity of p is denoted by v cos TPK or

v cos wi, for TPR = SPO = POQ = wt. This velocity may, like

the displacement, be expressed in terms of r, the amplitude, and

T, the period of the motion, for we have v = ^=-, and w = -=-,

*aS
ey , ^irt

so that v cos tot may be written as -7=-cos^=-. It will be seen
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from this result that the velocity varies as the cosine of the angle

"'j while the displacement varies as the sine of the same angle.
f)

That is, the velocity has its maximum value ^=~ when the dis-

placement is zero, and the displacement has its maximum value r

when the velocity is zero.

It should be noticed that the maximum velocity of p when at

0, the middle point of its path, is the same as the velocity of the

point P round the circle, for when P is at Q or Q', the direction

of its velocity is parallel to AB.

In the same way the acceleration of the point p is the com-

ponent of the acceleration of P in a direction parallel to AB.

Since P moves in a circle with uniform speed v it is subject to

o;2

an acceleration of constant magnitude directed towards the

centre of the circle. Thus, in Fig 39, if the acceleration of P is

represented by PT, the acceleration of p is represented by PR.

That is, the acceleration of p is always directed towards 0, the

#2

centre of its path of motion, and is equal to sin wt or

4?T
2r . 27T*

m-2
S111 m

The acceleration of the point p thus varies in the same way as

the displacement, and is, in fact, directly proportional to the
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4wV . 2irt 47T
2 / 2irt\ ^t

displacement, for -- sin =
-^ (r sin

-^- j,
and ? sm

-^r

denotes the displacement of the point. That is, if x denote the

displacement at any instant of a point moving in simple

harmonic motion, then the acceleration of the point at that

/27T\ 2

instant is ( -=-
J x, where T denotes the period of the motion.

Hence, if a point move in simple harmonic motion of period

T and amplitude r, the displacement, velocity, and acceleration

of the point at the end of any time t
t
reckoned from an instant

when the point passes through the centre of its path in the

positive direction, have the values given below.

Let the displacement be denoted by .r,
the velocity by u, and

the acceleration by a, then, from the results obtained above we

have

x = r sm

-^ Bin-Tjr
=

\^j x.

The relation a (-? J
& is an important one. It indicates

that the acceleration a is directly proportional to the displace-

ment x, and it can be seen from Fig. 39 that it is always

directed towards the centre of the path of motion.

34. The Simple Pendulum. A simple pendulum consists

of a particle suspended by a thread so fine that its mass and

weight may be neglected.

The particle forms the bob of the pendulum, and the length of

the suspension thread from the point of suspension to the particle

is called the length of the pendulum.

When the pendulum is set in vibration the particle which
6
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forms the bob of the pendulum swings backwards and forwards

through an arc of a circle whose centre is at the point of

suspension. If this arc is small compared with the length of

the pendulum, the motion of the pendulum is practically iso-

chronous, and approximates very closely to simple harmonic

motion.

The period of vibration of a simple pendulum may be

determined theoretically by the following method.

Let OP, Fig. 40, represent a simple pendulum suspended

from the point 0, and let the particle P oscillate backwards and

P

Fig. 40.

forwards through the small arc QPR. If this arc is very small

the motion of the particle may be considered without sensible

error as simple harmonic motion along QSE, the chord of the

arc.

The velocity of the particle at P, the middle point of its path,

is, therefore (Art. 33), the same as the velocity of a particle

which moves round a circle described on QR as diameter with

uniform speed, and makes a complete revolution in the time of

one complete vibration of the particle. Hence, if SR, the radius

of this circle, be denoted by r, the velocity of the particle at the
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middle point of its path by v, and the period of vibration of the

pendulum by t, we have v = -
.

But the velocity of the particle at P, the middle point of its

path, is the velocity acquired in falling from R to P through

the vertical distance SP. Hence, if SP be denoted by h, and

the acceleration due to gravity by g, we have, by Art. 29, the

relation,

v
2 - 2gh.

That is, , l^-) = 20*,

Now, in Fig. 40 we have TS . SP = (SR)
2
by Euc. iii. 35.

Hence, if OP, the length of the pendulum, be denoted by /, we

have

(21
- h)h = f2

,

or 2lh >- /i
2 r2

.

But when the arc QPR is very small, k is very small, and

k'
2

may be neglected. That is, when the amplitude of vibration

of the pendulum is very small, we have

r =
-2lh',

and if we substitute this value of r2 in the relation obtained

above, we have

47T
2
/

or r- = g.

That is, f2 =
Ĵ

or t = l
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This result shows that for vibrations of very small amplitude the

period of vibration of a simple pendulum is constant for a given

length, and varies directly as the square root of the length for

different lengths. For ^example, if the length of one simple

pendulum is four times the length of another, the period of

vibration of the longer pendulum will be twice that of the

shorter.

Experiment 3. Set up a simple pendulum and find its period of

vibration when the length of the pendulum has, in turn, the following
values : 100 cms., 81 cms., 64 cms., 49 cms., 36 cms., and 2-5 cms.

The period of vibration of the pendulum is most conveniently
observed by noting the average time occupied by 10, 20, 50, or

100 complete vibrations. The vibrations should be counted, beginning
at 0, and proceeding 0, 1, 2, 3, &c., as the bob of the pendulum
passes in a given direction (say to the right) through the middle point
of its swing.

It will be found that the periods of vibration thus found are in

the ratio ^/IOO : x/Sl : Joi : C/49 :

-N/36 : x/25, or 10 : 9 : 8 : 7 : 6 : 5.

That is, the period of vibration is found to be directly proportional
to the square root of the length when the length varies.

It will be seen that if t, the period of vibration of a simple

pendulum of known length, /, is determined accurately by

experiment, the value of g, the acceleration due to gravity, can

be at once calculated from the relation

=
V-

It must be remembered, however., that a simple pendulum is

a theoretical conception and cannot be realised in practice. The
nearest approach to it for practical purposes is a small heavy

sphere, such as a single shot, or small bullet, suspended by
a very fine thread or fibre. A rough determination of the

acceleration due to gravity may be made by a simple pendulum
of this kind. The length of the pendulum, from the point of

suspension to the centre of the bob, is carefully measured as the

pendulum hangs ready for use, and the period of vibration is-
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determined as accurately as possible by the method explained

above. The value of g can then be calculated from the relation

given above.

The most accurate experimental determinations of the ac-

celeration due to gravity are made by means of the compound

pendulum. Any rigid body mounted so as to be capable of

vibration round a fixed axis under the action of its weight is

called a compound pendulum. If the body is of regular form, such

that its moment of inertia (Art. 45), can be calculated from its

dimensions, the length of the equivalent simple pendulum, which

has the same period of vibration as the body, can be calculated

from the radius of gyration of the body about an axis through

the centre of gravity and the distance of the centre of gravity of

the body from the axis of rotation.

Hence, if the period of vibration of a compound pendulum be

determined with great accuracy by special methods, and the

length of the equivalent simple pendulum is calculated from data

found by exact measurement of the necessary dimensions of the

pendulum, the acceleration due to gravity can be found by the

relation given above.

The theory of the compound pendulum and the details of

the methods of determining the acceleration due to gravity by

its use are, however, beyond the scope of this book, and cannot

be further considered.

Example. Find the length of the seconds pendulum at a place

where the acceleration due to gravity is 32 '18 ft. -per-sec. per second.

The "seconds" pendulum is the simple pendulum which would

3>eat seconds or make half a complete vibration in one second. The

period of vibration of the seconds pendulum is, therefore, 2 seconds,

:so that by applying the relation
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32-18 x 4
we have l =

4 x 9-8696'

or / = 3-2604.

That is, the required Tength of the seconds pendulum at a place

when the accumulation due to gravity is 32' 18 ft. -per-se<j. per second

is 3-2604 feet, or nearly 39-125 inches.

The length of the seconds pendulum at London is 39*129

inches.
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CHAPTER IX.

FORCE.

35. Newton's First Law Of Motion. Newton's first law of

motion states that a body continues in its state of rest or of

uniform motion in a straight line except in sc far as it is com-

pelled by the action of force to change this state.

It should be remembered in interpreting this law that "
rest

"

and " uniform motion in a straight line
"
are the two states in

which there is no change in the motion of the body ;
that is, no

change in the magnitude or direction of the velocity of the body.

A body at rest is obviously free from change in this respect, and

a body in uniform motion in a straight line moves with a velocity

which is constant in magnitude and direction, and is, therefore,

also free from change. Hence if a body is not acted on by
"
force

:>

it must be in one of these states, and must continue,

without change, in that state.

If the law is considered in relation to the body in motion it

may be taken as defining a general property of matter. It states

that any body or piece of matter is unable by its own action to

change its state of rest or motion
;
unless acted on by an external

"
force

"
it remains at rest or continues to move with uniform

motion in a straight line. This property of matter is called

inertia.

If the law is considered in relation to the motion of the body
it serves to define "force." The law states that the action of

force compels a body to change its state of rest or motion.

Force may, therefore, be defined as that which causes change in
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the motion of a body. It is important to understand that the

change of motion produced by the action of a force is not a

sudden change produced when the force first acts on the body,

but a continuous progressive change which goes on during the

whole time the force acts.

This law is sometimes used as a means of defining what is

meant by equal intervals of time. It will be seen that equal times

may be defined as the times in which a body free from the action

of force moves over equal distances.

The law cannot be verified directly by experiment, for it is

impossible in practice to free a body entirely from the action of

force. General observation shows, however, that the more com-

pletely a body is freed from the action of force the less appreci-

able becomes the change in its state of motion.

For example, in the case of the motion of a small truck on

straight horizontal rails, it is found that the more the opposing

forces of friction are reduced the more nearly does the motion of

the truck approximate to uniform motion in a straight line.

We are familiar from everyday experience with the fact that

a body in motion tends to continue in motion till stopped by
the application of force. If a train or carriage of any kind in

rapid motion is stopped suddenly,* the passengers and luggage

in the carriage tend to continue their onward motion. If they

are securely fixed in position they are brought to rest with

the train by the resistance of their supports ;
if they are not

securely fixed they may actually continue their motion after the

train has stopped until they are brought to rest by the resistance

of some fixed support. That is, they are apparently thrown

forward against whatever may be in front of them.

*It may be noticed that when a train is stopped gradually in the

ordinary way, the passengers frequently experience a jerk backwards

instead of forwards. This is due to the fact that as the train slows up the

muscles of the body are braced to reduce the forward motion of the parts
which are not directly supported, and the action of these muscles produces
the jerk backwards if the train stops before they can be relaxed.



FORCE. 89

When a ball is thrown vertically upwards inside a railway

carriage in motion it is, while in the air, practically free from

the action of any force affecting its motion in a horizontal

direction. Its horizontal motion, which is the same as that of

the train at the instant of leaving the hand, must, therefore,

continue without change while the ball is in the air. That is, if

the motion of the train does not change while the ball is in the

air, the two move forward together with the same horizontal

motion. We know from experience that this is the case
;

if the

ball is thrown vertically upwards from the hand, it keeps verti-

cally over the hand while in the air, and ultimately returns to

the hand.

It is also a matter of common observation that in order to set

a body at rest in motion, the force applied must be greater than

that required to overcome the frictional and other forces opposing

the motion. The excess of force is required to produce the

change from rest to motion, and if the excess is maintained the

change of motion continues, and the velocity of the body

steadily increases. If the excess is not maintained, and the

applied force is reduced to equality with the opposing forces

when a certain velocity has been attained, the motion continues

without further change, for the resultant of the forces acting on

the body is zero. If the applied force is removed, or reduced so

as to be less than the opposing forces,* the body is gradually

brought to rest again.

36. Newton's Second Law Of Motion. Newton's second

law of motion states that change of motion is proportional to the

impressed force, and takes place in the direction in which that

force acts.

It is evident that the term "
motion," as used in this law,

applies to a measurable quantity, for it is said to be proport-ional to

the impressed force. Newton explains that the term "
motion,"

* These forces are here supposed to act only while the body is in

motion.
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as here used, involves the mass as well as the velocity of the

body in motion, and must be taken, when applied to any body,
as the product of the mass of the body into its velocity at

the instant considered.* That is, if in denote the mass of any

body, and v its velocity at any instant, then the quantity mv

is the motion of the body at that instant in the sense in which

Newton uses the term in his statement of this second law.

This quantity is now generally called momentum. It is a vector

quantity, and its direction at any instant is the same as the

direction of the velocity at that instant.

It will be seen, too, that the element of time must also be

involved in the law, for the "
change of motion

"
produced by

the action of the impressed force, must depend upon the time in

which the change is supposed to take place. In accordance with

Newton's explanations on this point we may interpret
u
change

of motion
"

to mean change of motion per unit time, or the

time-rate of change of motion. We may now re-state the law

in the following terms.

The time-rate of change of momentum of a body at any
instant is directly proportional to the force acting on the body
at that instant, and takes place in the direction in which the

force acts.

If the force acting on the body is constant in magnitude

and direction, the rate of change of momentum is also

constant in magnitude and direction, but if the force is variable

the rate of change of momentum also varies from instant to

instant.

If at any instant the rate of change of velocity, or the acceleration

of a body of mass m is denoted by a, the rate of change of

momentum of the body must be ma
;
that is, the force acting on

the body at that instant is directly proportional to ma, and the

direction of the force is the same as the direction of the

acceleration.

The simplest case illustrative of this general result is
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that in which a body moves along a straight line under

the action of a constant force acting in the same direction

as that in which the body is moving. In this case let

u denote the velocity of the body at any instant, and v velocity

at an instant t units of time later; then, if m denote the

mass of the body the change of momentum during the time is

given by (mv mu), and the rate of change of momentum by
mv mu m (v ),.- . .1 i i ,1-

,
or - ---

-. I he force acting on the body is, there-
t t

fore, proportional to ---
,
and since the force is constant,

y;
_

,

it follows that - is constant. But - - is evidently the
t v

average acceleration of the body for the time
t,

and if this is

constant for all values of t, it follows that the body moves with

uniform acceleration along the straight line. Hence, if a body
of mass in moves with uniform acceleration a along a straight

line, the force acting on it is constant, and proportional

to ma.

The motion of a body falling vertically under the action of its

own weight is an example of this case of motion. The weight

of the body is practically constant for a short fall, and the body
is known by experiment to fall vertically in a straight line with

the uniform acceleration known as the acceleration due to

gravity.

In connection with the general result that the force acting on

a body at any instant is directly proportional to the product of

the mass of the body into the acceleration at that instant, it

must be remembered that the direction of the force is, in all

cases, the same as the direction of the acceleration.

37. Unit Force. In the foregoing article it has been shown

that if a body of mass m is subject at any instant to an acclera-

tion a, the force acting on the body at that instant is pro-

portional to ma, in accordance with Newton's second law of
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motion. We may, therefore, write

F is proportional to ma,

or F = kma,

where k is a constant.

If we now agree that when m and a are both of unit value,

F shall also be of unit value, the value of k becomes equal to 1,

and we may write

F = ma.

That is, if we define the unit of force as that force which pro-

duces unit acceleration in unit mass, we may measure the force

which produces an acceleration of a units in a mass of m units

by the formula,
F = ma

as given above.

The unit of force in the English F.P.S.' system of units will

be that force which produces an acceleration of 1 ft.-per-sec.

per sec. in a mass of 1 pound. This unit is called a poundal.

The unit of force in the C.G.S. system will, similarly, be that

force which produces an acceleration of 1 cm.-per-sec. per second

in a mass of 1 gramme. This unit is called the dyne.

It should be noticed that the relation F = kma, derived from

Newton's second law, takes the from F = ma as the result of the

definition adopted for the unit of force.

It follows, therefore, in using the formula F ma, that

F will always be expressed in terms of a unit of force consistent

with the units in which m and a are expressed. Thus, if m is

in pounds, and a in feet-per-sec. per sec., F will be in poundals.

Similarly, if m is in grammes, and a in cms.-per-sec. per sec., F will

be in dynes.

38. Mass. The meaning of the term mass can now be more

fully explained and understood. It must be remembered that

forces can be specified and compared without involving in any

way the idea of mass. A force may, for example, be definitely
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specified as the force which will extend a certain standard spiral

spring through a given distance.

Similarly, equal forces may be defined as forces which extend

the same spiral spring to the same extent, and unequal forces

may be compared by comparing the extents to which they

extend the same spring.

The mass of a body is evidently the quantity which measures

the inertia of the body. In explaining Newton's second law of

motion the term mass has been used without any explanation.

It will be seen, however, that the idea of mass as a measurable

quantity is derived from this law, and that the interpretation of

the law includes the explanation of what is really meant by mass.

From the relation F = kma deduced from the second law in

Art. 37 above, we get

1 F
m = 7

-
k a

This result shows that the mass of a body, as the term i&

used in this law. is a quantity which is directly proportional to

the force required to produce a given acceleration of the body, or

inversely proportional to the acceleration produced by a given

force. The three statements given below follow directly from

this result.

1. A mass may be definitely specified as the mass on which

the action of a given force produces a given acceleration.

2. Equal masses may be defined as masses on which the action,

of the same force produces the same acceleration.

3. Masses may be compared (a) by comparing the accelera-

tions produced by the action of the same force on the masses to

be compared ;
or (b) by comparing the forces which, when acting

on the masses, produce the same acceleration. In the one case

(a) the masses would be inversely proportional to the accelera-

tions, and in the other case (&), the masses would be directly

proportional to the forces.
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It will be seen at once from the last of these three statements
I

[3 (b)] that masses may be compared by comparing their weights,

provided the acceleration due to gravity is the same for all
j

bodies whatever may bg the size or material of the bodies. If

this is the case the weights of different masses are evidently

forces which produce the same acceleration when acting on the

masses, and are, therefore, directly proportional to the masses.

Galileo and Newton both proved by direct experiment that the

acceleration due to gravity is the same for all bodies, and is

quite independent of the size and material of a body. It

follows that the comparison of masses by the process of "
weigh-

ing," as described in Art. 23, is in strict accordance with the

-definition of mass derived from Newton's second law.

It should be noticed that we can use the relation, F kiim,

which we derived from this second law to define a unit of force,

.as above, or to define a unit of mass. If we selected a unit of

length, a unit of time, and a unit of force (such as the force

required to extend a standard spiral spring a specified distance)

as fundamental units, we might define the unit of mass as the

mass in which the unit of force produces unit acceleration. If,

on the other hand, we follow the general practice and select

a unit of length, a unit of time, and a unit of mass (Art. 4) as

fundamental units, we define unit force as that force which

produces unit acceleration by its action on unit mass, as explained

above.

In either case the relation F = kma would reduce to

F ma, but the system of units would be essentially different

in the two cases.

39. Weight. It has already been explained that the weight

.of a body at any place on the earth's surface is the force with

which the earth attracts the body towards it. This force acts

towards the centre of the earth and its direction at any place

.determines the vertical direction at that place.

When a body falls at any place the force acting on it is its
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own weight and the acceleration with which it falls is the

acceleration due to gravity at the place.

If, therefore, we apply the formula F = ma to the case of

a body falling freely at any place, and if we write W instead

of F for the particular force called weight, we get the formula

W = mg,

where
<j

denotes the acceleration due to gravity at the place.

In this formula W evidently denotes the weight of the body

at the given place in absolute units of force. The weight of

a pound mass at a place where the acceleration due to gravity

is 32-18 ft.-per-sec. per sec. is evidently (1 X 3 2 '18) or

32*18 poundals. It will be seen from this that a poundal is,

roughly, equal to the weight of half an ounce.

Similarly, the weight of a gramme at a place where the accelera-

tion due to gravity is 980*8 cms.-per-sec. per sec. is 980'8 dynes.

It will be clear from what has been said that the weight of

a given mass depends for its value at any place on the

acceleration due to gravity at that place, and varies, therefore,

from place to place on the earth's surface.

The weight of a pound or a pound-weight is, therefore, not

a constant force but is equal at any place to g poundals, where

g is the acceleration due to gravity in ft.-per-sec. per sec. at

that place.

Similarly, the weight of a gramme or a gramme-weight is not

a constant force, but is equal at any place to g dynes, where

g is the acceleration due to gravity in cms.-per-sec. per sec.

at that place.

When a force is expressed in terms of the weight of some

-convenient unit of mass, such as a gramme-weight, a pound-weight,

a ton-weight, or some similar unit, it is said to be expressed in

gravitation units. These units are very generally employed in

engineering problems, but it must be remembered in dealing

with them that the value of a gravitation unit is not a constant,
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but depends for its value at any place on the acceleration due

to gravity at that place.

The relation W = mg may be used conveniently to show that

the weights of different bodies at the same place are directly

proportional to their masses. Let m
1
and m9 denote the masses

of two bodies, and let W
l
and W

2
denote the weights of these

masses at a given place. Then, if
fj

denote the acceleration due

to gravity at the place, we have

^ = m$
and "Wo = m.2g.

This gives

Wj _ rn^j

W,
~
m/

and since g is known, from experimental evidence, to have the

same value for both masses this relation reduces to

Wj m
W

2
m'

That is, the weights of the two bodies are directly proportional

to their masses.

40. AtWOOd's Machine. Atwood's machine is a piece of

apparatus designed for the experimental study of the relations

between force, mass, and acceleration, which are involved in

Newton's second law of motion.

It consists, essentially, of a light wheel mounted with its axis

horizontal, on bearings which are constructed so as to be as free

from friction as it is possible to make them. The rim of the

wheel is grooved, like a pulley, so that a light flexible cord

carrying a mass at each end, can be passed over it, as shown in

Fig. 41. If the two masses, A and B, are equal, their weights

are equal, and will evidently balance each other, so that the

system remains at rest. If, however, we place a small mass as a

rider on one of these equal masses, the weight of this small mass
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will set the system made up of the two masses A and B, the

rider, the cord joining the masses, and the wheel, in motion.

If, however, we neglect the motion of the cord and the wheel, and

neglect also the forces of friction and air resistance which oppose

motion, we may consider that the weight of the rider acts on a

mass equal to the sum of the two masses, A and B and the mass

of the rider, and sets it in motion. Hence, if m denote the mass

of the rider, and M the mass of each of the two equal masses

A and B, we have a force of mg units acting on a mass of

(2M + m) units, and we may, therefore, apply the relation

F ma, and write

mg = (2M + m) a,

where a denotes the acceleration of the mass in motion.

If we now measure the acceleration ar experimentally,

for a number of different values of m and M, we can

examine whether the values obtained by experiment

are consistent with the relation given above. For

example, in one set of experiments let m be

varied, but let the mass moved (2M + m) be

kept constant and equal to M. Then if m
l Fi 41

and m.2 denote the masses of the rider, in two

cases the relation deduced from Newton's second law gives

and m.,g
= Ma 2 .

m
l ^
,;=?

where
x
and a.2 are the accelerations in the two cases. If, now,

the values of $j and a
2
are determined by experiment, and the

value of the ratio -

1
- is known * we can readily test whether

m.2

the experimental results are in accord with the result obtained

* The ratios and =-~ cannot, in these experiments, be determined
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above. Similarly, in another set of experiments let m be kept

constant, but let the mass moved (2M-f-w) be varied. Then, if

M! and M2 denote the value of the mass moved, in two cases

we have

mg = M^,
and mg

or

where
T
and a.2 are the accelerations in the two cases. Here

again, if a-^ and a.
2

are found by experiment, and the ratio

M
=~ is known,'" the agreement between theory arid experimentM

i

can readily be tested.

The acceleration of the moving mass may be determined by
the following method.

The masses A and B, with the rider on A, are arranged as

shown in Fig. 42, and a vertical scale, SS, is set up so that the

motion of either mass may be followed on it. The system is

first held at rest by supporting the mass A on a small movable

platform. At a marked instant this platform is removed, and

the system is allowed to move for a definite time under the

action of the weight of the rider as the moving force. At the

end of this time the cylindrical mass A passes through the ring

by the process of weighing without assuming the truth of the result it

is desired to test. The masses used in the experiment may, however,
be made up of small equal masses made of the same volume of the same

material. If some of these small equal masses are made in the form of

riders, and others as slotted discs and carriers, or in some other suitable

form, the experiments can be conveniently carried out by simply dividing
the masses between A and B (Fig. 41), so as to fulfil any given conditions,

such as those indicated above, and the ratios and -~ can be deter-w2 M!
mined without making any assumption other than the permissible one,

that the masses of equal volume of the same material are equal.
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at C, when the rider is removed and left resting on the ring

without interfering with the motion of the masses A and B.

The instant at which the rider is lifted off A is marked or

recorded in some convenient way.

After the removal of the rider, the system is

allowed to continue in motion for another interval

of time, until it is brought to rest by the mass A
striking the small platform fixed at D. The

instant at which A touches this platform is

marked or recorded as before.

In this experiment three instants are recorded

the starting instant, the instant at which the

rider is removed from A, and the instant at

which A touches the platform at D. During the

interval between the first and second of these

instants, the masses move with uniform accelera-

tion, under the action of the weight of the rider

as the moving force. During the interval be-

tween the second and third of these instants the

system is free from the action of any force

tending to change its state of motion (friction

and air resistance being neglected), and moves,

therefore, throughout the time with a uniform

velocity equal to the velocity acquired at the

instant the rider was removed. Hence, if ^
denotes the first of these intervals of time, and

a denotes the acceleration of the moving mass

during this interval, we have

v ati,

where v denotes the velocity acquired at the

instant the rider is removed. Then, if t2 denotes the second

interval of time in which the masses move with uniform

velocity, v, the space passed over in the time, is given by
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That is, s = at^ . 2
= atfa,

and

If, therefore, in this experiment we determine the intervals

l
l
and /2 ,

and observe on the scale SS the distance 5 which the

mass A moves through during the time t.
2 ,
we can calculate the

value of a from the relation given above.

The intervals of time t
l
and > can be determined with fair

accuracy if the instants referred to above are recorded on a

chronograph trace as explained in Art. 19. They may also be

determined roughly with the aid of a clock or metronome which

ticks sharply and distinctly. The mass A is released at a certain

tick, the position of the ring at C is adjusted by repeated trials

until it removes the rider at the next tick, and the position of

D is adjusted in the same way until it is so placed that the

mass A strikes it at the instant the third tick is heard. That is,

the starting instant, the instant of removing the rider, and the

instant A touches D, are made to coincide with three successive

ticks of the clock or metronome. The times t
l
and t.2 are thus

made equal to one another, and to the interval between two

successive ticks. If this interval is exactly one second we have

s
a -, or a = s.

i x r

That is, the acceleration is numerically equal to the space passed

over in the second interval of time.

These intervals of time may also be measured by weighing

the quantity of water or mercury which escapes in each interval

through a small hole in a vessel containing the liquid. This is

the water clock method adopted by early experimenters with

Atwood's machine.

The distance s is obviously the distance between the upper

faces of the ring at C and the platform at D, diminished by the

length of mass A.
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If the experiments indicated above are carried out in the

manner here described, it will be found that the more com-

pletely the sources of error in the experiments are removed the

more nearly do the results obtained agree with those deduced

from Newton's second law of motion.

It will be seen that if we accept Newton's second law of

motion as true, we can use Atwood's machine to determine the

acceleration due to gravity. From the relation

mg =
( 2M + m) a,

2M -f- m
we get (j

=
m

'a-

so that if a is determined by experiment, as explained above,

and M and m are known, the value of y can be calculated

directly from this result.

Atwood's machine is of great interest historically and theo-

retically, but it is extremely difficult to obtain anything like

accurate results by its use for experimental work.
'

The main

sources of error are those due to the neglect of (a) the mass of

the string ; (6) the inertia of the wheel
;
and (c) the friction and

air resistance which oppose motion. The moving force (the

weight of the rider) should really be split up into the following

parts :

j\ ,
which acts on the masses A and B and the mass of the rider,

and which produces the acceleration of these masses.

A'j, which acts on the mass of the string, and sets it in motion with

the acceleration of the system.

,v.2 ,
which acts on the wheel and sets it in rotation round its axis

with an angular acceleration, such that the linear acceleration of a

point on the rim where the string touches the wheel is the same as

that of the string.

A-3 , which is neutralised by the opposing forces of friction and air

resistance.

Of these fl
is the real moving force which produces the accelera-

tion of the moving system, and it will be seen that /x
= /

-
(x' -f a- + .<'.
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The error which results from neglect-

ing xlt x,2 ,
and

:>'..,
and taking /, the

weight of the rider, as the moving force,

will depend upon the magnitude of

(/! + tf-2 + ^
3), compared with /, and

may be very great. If the string is

very light, and the wheel is light,

properly designed, and mounted on

frictionless bearings, r^, ,/'.,, and rst may,
for rough purposes, be neglected, pro-

vided / is not small. For more accurate

work, however, these errors must be cor-

rected and allowed for by methods which

we cannot here consider. Correction

should also be made for the change in

the moving force caused by the fact that

as the system moves the weight of the

string on one side of the wheel increases,

while the weight on the other side de-

creases.

In all elementary problems and experi-

ments relating to Atwood's machine, the

mass of the string, the inertia of the

wheel, and the opposing forces of fric-

tion, are usually neglected.

A form of Atwood's machine suitable

for accurate work is shown in Fig. 43.

The experimental results which can be

obtained by this machine, even under the

best conditions and with due regard to

the sources of error, are not, however,

of a very high degree of accuracy.

41. Newton's Third Law of

Motion. Newton's third law of
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motion states that to every action there is an equal and

opposite reaction
;
or that the mutual actions of two bodies are

equal in magnitude and opposite in direction.

The terms "action" and "reaction" in this law apply to

forces. The law implies that force can be exerted only by one

piece of matter on another, and that the action between any
two bodies is mutual, so that each body may be considered to

exert force on the other. This mutual action between two

bodies is generally called stress. Hence, if a stress exists

between two bodies A and B, and the force exerted by A
on B is taken as the action, then the equal and opposite

force exerted by B on A is called the reaction. Action and

reaction are thus merely opposite aspects of the stress between

the bodies.

When the stress between any two bodies is such that each

presses against the other, the stress is of the particular kind

known as pressure. Thus, if we press with the hand against a

wall, the hand presses on the wall, and the wall resists or presses

back against the hand. The stress between the hand and the

wall is thus a pressure ;
the hand exerts pressure on the wall,

and the wall exerts an equal and opposite pressure on the hand.

That is, the action and reaction are equal and opposite.

Similarly, when a book rests on a table it exerts a pressure

vertically downwards on the table
;

at the same time the table

resists arid exerts pressure vertically upwards on the book.

This upward pressure exerted by the table on the book must be

equal and opposite to the weight of the book, for the two forces

acting on the book are its weight acting downwards, and the

resistance or upward pressure of the table acting upwards, and

since the book remains at rest, these forces must be exactly

equal and opposite to each other. Hence, if the downward

pressure of the book on the table be taken as the action, the

resistance or upward pressure of the table on the book is the

reaction, and these forces are equal and opposite in accordance
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with Newton's third law, and each is equal to the weight of the

book.

If a box rests on the floor of a lift in motion the stress between

the under surface ofthe box and the floor of the lift is a

pressure, and the action and reaction between the surfaces are

equal and opposite ;
but they are not necessarily equal to the

weight of the box. Let the pressure of the box on the floor of

the lift be denoted by P, then the reaction of the floor acts

vertically upwards and is also equal to P, as shown in Fig. 44.

The forces acting on the box are, therefore, its weight, AY, acting

vertically downwards, and P the resistance from the floor acting

vertically upwards. Hence, if P = AA
7

,
the resultant force

acting on the box is of zero value, and the box (and lift) must

either be at rest or moving with uniform

motion in a straight line up or down. In

this case the pressure of the box on the floor

of the lift would be equal to its weight. If,

however, AA
r

is greater than P, the box is

under the action of a force (W --
P) acting

p downwards, and will, therefore, be subject to

Fig. 44. the downward acceleration caused by the

action of this force on the mass of the

box. In this case the pressure of the box on the floor of

the lift is lets than its weight. The weight may, in fact, be

divided into two parts a part, P, which exerts pressure on the

floor, and the remainder (W P), which gives the box its down-

ward acceleration. If, again, P is greater than W, the box is

moving under the action of a force (P AV) acting upwards,

and will be subject to the acceleration caused by the action of

this force on the mass of the box. In this case the pressure of

the box on the floor of the lift is greater than its weight, for

the floor not only supports the weight of the box, but exerts

the additional force (P AV) which gives the box its upward
acceleration.



FORCE. 105

When the stress between any two bodies is such that each

body exerts a pull towards itself on the other, the stress is of

the type called tension. Thus, if two persons pull against each

other along a rope, as in a "tug of war," the stress between

them is a tension. The stress is properly considered to act

across any transverse section of the rope between the two

portions of the system separated by this section. If the rope is

at rest the tension is practically the same at all points in its

length. For, if T
l
denotes the tension at a point, A (Fig. 45),

and T
2
the tension at another point, B, it is evident from the

figure that the force acting on the portion AB of the rope
*

is

(TT
- T2), if we assume T

t
to be greater than T,, and if we

neglect the weight of the rope. But if the rope is at rest, the

force acting on any portion of it must be of zero value that is,

T
1
and T

2
must be equal. Hence, when the rope is at rest, and

Fig. 45.

the tension the same at all points in it, we generally speak of

the tension of the rope, and consider the stress to act by means of

the rope between the two persons pulling at its ends. When

a body hangs at rest from a nail by a thread, as in Fig. 46, the

tension in the thread at any point, A, is equal to the weight of

the body and the piece of thread below this point. For this

weight, W, acting at A, is evidently balanced, as shown in the

figure, by T, the tension in the string at this point. If we

neglect the weight of the thread the tension is evidently the

same at all points in the thread, and is equal to the weight of

the body. The body thus exerts a downward pull, equal to its

weight, on the nail, and the nail exerts an equal upward pull on

the body. The thread in this case may be looked upon as the

* The left-hand arrow at A and the right-hand arrow at B evidently

indicate the forces acting on the portion AB.
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medium or connection between the body and the nail, by means

of which the stress between these two bodies is maintained.

If a mass hanging by a thread is in motion, as in the case of

the masses of Atwood's machine, the tension of the thread is not

in general equal to the weight of the mass. Let the mass, A, in

Fig. 47, be supposed to be moving up or down in a vertical line.

The forces acting on the mass are its weight, W, acting vertically

downwards, and the tension in the thread, T, acting vertically

upwards. If the mass is at rest, as above, or moving up or

down with uniform velocity, the resultant force acting on it must

be of zero value, and T must be equal to W. That is, in this

case, the tension in the string would

be equal to the weight of the mass.

If the mass is moving upwards or

downwards with uniform acceleration

downwards, T must be less than W
and the difference (W T) is the force

which gives the mass its downward

acceleration. If the mass is moving

upwards or downwards with uniform

acceleration upwards. T must be

4
_ greater than W and the difference

(T W) is the force which gives

the mass its upward acceleration.

It must be remembered that in each of these cases the stress

at the point of attachment of the string to the mass is the

tension in the string at that point ;
the string exerts an upward

pull on the mass equal to the tension T, and the mass exerts

an equal downward pull on the string. The weight W is an

external force exerted by the earth on the mass
;
the reaction

to this is the equal and opposite force exerted by the mass on

the earth.

In applying the third law of motion to any body or system in

motion it must be remembered that the action and reaction must
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be taken at the same point, or across the same section. Thus, if

AB (Fig. 48) represents a body in motion in the direction of the

arrow at B, and we consider the stress across a transverse section

at C, we can say that the action and reaction at this section are

equal and opposite. Similarly, if we consider the stress across

the transverse section at D, we can also say that the action and

reaction at this section are equal and opposite. The stress at D
will not, however, in general be the same as at C. Let P and

P' denote the stresses at C and D respectively, then the resultant

force cwting on the portion CD is evidently the difference between

P and P'.*

If the body is in motion with uniform velocity, P is equal to

P'. If the body is subject to acceleration in the direction of its

motion, then P must be greater than P', and the difference

Fig. 48.

(P P') is the force which gives the mass of the portion CD
the acceleration with which it moves. If the body is subject to

retardation then P' must be greater than P, and the difference

(P' P) will be such as to produce in the mass of CD the

retardation to which it is subject.

Thus, in the case of the motion of a horse and cart along a

level road, the horse and cart move as one system, and the

difference between the stresses at any two vertical sections of

the system gives the force which at any instant determines the

motion of the portion of the system between the sections.

The force which causes the motion of the system as a whole is

derived from the stress between the horse's feet and the

*
External forces, such as the weight of the body and frictional

resistance to motion, are here neglected.
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ground. The component parallel to the road of the reaction

of the ground on the horse's feet is the force which acts on the

system at any instant, and the system moves forward with

uniform velocity, or is, subject to acceleration or retardation

according as this force is equal to, or greater or less than, the

forces which oppose motion.

The reaction of the ground on the horse's feet is equal and

opposite to the " action
"

of the feet

on the ground, and depends, therefore,

for its value on the muscular effort

exerted by the horse.

It will be understood from the

examples which have been given

above that, in determining the forces

which act on any portion of a system

which moves as a whole, the stresses

due to its connection with the rest of

the system must be considered, as

well as the external forces which may
act on it. This may be more fully

understood from a study of the fol-

lowing numerical example.

Numerical Example. Three masses,

A, B, and C, of 10 grammes, 5 grammes,
and 12 grammes mass respective!}', are

Fig. 49. connected in line by a fine thread and

arranged on the wheel of an Atwood's

machine in the manner shown in Fig. 49 ; find the tension in the

thread connecting A and B, and in the thread connecting B and C
when the system is in motion under the action of the weights of the

masses.

The thread being fine the mass and weight of the connecting
threads may be neglected, and the tension in either thread may be

considered to be the same at all points in its length.

Let T denote the tension in the thread connecting A and B, and T'

the tension in the thread connecting B and C. Consider first the
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motion of the mass A. The forces acting on it are its weight W,
acting vertically downwards, and the tension T, in the thread AB,

acting vertically upwards. The mass is evidently subject to down-

ward acceleration, so that the resultant force acting on it is

downwards and equal to (W -
T). The mass of A is 10 grammes,

and its weight, W, is (10 x 981) dynes (Art. 39), so that by applying
the relation F = ma, we get

9,810 - T = 10a, (1)

where a is the acceleration of the mass A, and, therefore, of the

whole system of masses.

Consider next the motion of the mass B. The forces acting on this

mass are its weight, W, acting vertically downwards, the tension,

T, in the thread BA, also acting vertically downwards, and the

tension, T', in the thread BC, acting vertically upwards. The mass

moves with downward acceleration, a, so that the resultant force

acting on it is downward, and is equal to (W + T -
T'). The mass

of B is 5 grammes, and its weight W, is (5 x 981) dynes, so that by

again applying the relation F = ma, we get

4,905 + T - T = 5a (2)

In the same way by considering the motion of the mass C, we get the

result

T' - 11,772 = 12a. ....... (3)

From the three equations thus obtained we can find the values of

T, T', and a in the usual way.
It will be found that

T = 8,720,

T' = 13,080,

and a = 109.

T and T' being expressed in dynes, and a in cms.-per-sec. per sec.

These results may be arrived at more expeditiously by considering
first the system as a whole, and finding the acceleration of its motion.

The mass of the system is 27 grammes, and the force to which its

acceleration is due, is evidently the difference between 15 gramme-

weights and 12 gramme-weights, or 3 gramme-weights, or (3 x 981)

dynes. If, therefore, we apply the relation F = ma to the system,
we get

3 x 981 = 27a ;

or a = 109.

That is, the acceleration of the system is 109 cms.-per-sec. per sec.
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If we substitute this value of a in equation (1) obtained above, we

get
9,810 - T = 1,090;

or T = 8,720.

That is, the tension iif the thread AB is 8,720 dynes, or 8f gramme-
weights. Similarly, by substituting for a in equation (3), we get

T - 11,772= 1,308;

or T' = 13,080.

That is, the tension in the thread BC is 13,080 dynes, or 131 gramme-
weights.

42. Motion in a Circle. It has been shown in Art. 32

that a particle moving in a circle of radius r, with a velocity of

v2

constant magnitude v, is subject to a constant acceleration

directed towards the centre of the circle. Hence, if m denote

the mass of the particle, the magnitude of the force which acts

on the particle and keeps it moving in its circular path is
a

,
and the direction of this force always passes through

the centre of the circle.

For example, the moon moves round the earth in an approxi-

mately circular path, and the force constraining it to move in

this path is the force of attraction exerted on it by the earth.

Hence, if M denote the mass of the moon, V the magnitude of

its velocity round the earth, and R its distance from the centre

of the earth, the force of attraction exerted on it by the earth

must be equal to 5.
K,

Example. A stone of 100 grammes mass is whirled round in a

vertical circle, at the end of a string 100 cms. long, at a uniform

rate of 10 complete revolutions per minute. Find the tension in the

string when the stone is (a) at the top of its path, and (b) at the

bottom of its path.

(a) Let W denote the weight of the stone, and T the tension in the

string ; then when the stone is at the top of its path the force act iny
on the stone towards the centre of the circle is evidently W + T. Hence,
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if m denote the mass of the stone, r the radius of the circle in which

it moves, and v its velocity in this circular path, we must have

From the data of the question we know that in C.G.S. units we

have

m - 100 (grammes).
r = 100 (cms.)

10 X 2007T 1007T .

w =
go"

=
-3- (cms- per sec.)

and W = 100 x 981 = 98,100 (dynes).

Hence, we get,

98.100 + T = -

100x
1%

xlOI = -'xlO..

That is, T = ir
3 x 104 - 98,100

= 98,696 - 98,100
= 596.

Or the tension on the string when the stone is at the top of its path

is 596 dynes, or "61 gramme-weights.

(b) Similarly, when the stone is at the bottom of its path, the force

acting on the stone towards the centre of the circle is T - W.

Hence, as above, we get

T - w = e*
T

or T -
98, 100 = ir

2 x 104 .

That is
*

T - 98,100 + 98,696
= 196,796.

That is, the tension on the string at the lowest point in its path is

196,796 dynes, or about 200*6 gramme-weights.

It is important to realise, in connection with the result
a

obtained above, that -- is not the magnitude of a new force

which acts on the body in virtue of its circular motion, and in

addition to any other forces which may be acting on it
;

it is

the magnitude of the resultant of the forces actually acting on

the body.

That is, if a body of mass m moves in a circle of radius r,



112 GENERAL PHYSICS.

with a velocity of constant magnitude v, the resultant force

acting on the body at any point in its path is directed towards
A>1 ,0*2

the centre of the circle, and its magnitude is .

When a particle moves in a circle, it may be said, in accord-

ance with Newton's third law of motion, that a stress exists

between the particle and the centre of the circle. This stress

acts on the particle towards the centre, and on the centre towards

the particle, or away from the centre. These two aspects of this

stress have been called the centripetal and centrifugal forces.

The existence of this stress between a particle in circular

motion and the centre of its path explains why a flywheel or

emery-wheel in rapid rotation sometimes "bursts." Stress exists

between every particle of the wheel and the axis of rotation, as a

tension in the intervening material of the wheel, and if this stress

becomes at any point too great for the strength of the material to

withstand, the wheel " bursts
"
into fragments. At the instant

of bursting each fragment is freed from the constraint which

compels it to move in a circle, and will, therefore, continue its

motion in the same direction and with the velocity which it has

at that instant.

43. Simple Harmonic Motion. It has been shown in

Art. 33, that when a particle moves in simple harmonic motion,

the acceleration of the particle is directed towards the centre of

,f) \ 2

the path of motion, and is of magnitude I x, where T
)

denotes the period of the motion and x the displacement of the

particle. Hence, if m denote the mass of the particle, the

force acting on the particle at any instant during its motion is

27T\
2 47T

2W
T
-\ mx, or

-^g-
x.

That is, the force acting on the particle at any instant during

its motion is directly proportional to its displacement at that

instant, and is directed towards the centre of the path of motion.
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Hence, if a body is so constrained that the force which acts

on it, as the result of any displacement from its position of rest,

is proportional to the displacement and directed towards its

position of rest, the body will move in simple harmonic motion

along the line of displacement, and its position of rest will be

the centre of its path of motion. Also, if the force acting on the

particle is denoted by lex, where k is a constant, we have

or k ~

For example, if a small bullet of mass m, hangs by a thin

elastic cord which is stretched by the weight of the bullet

through a distance, d, the force which will act on the bullet as

the result of a small vertical displacement, ^, from its position of

rest will be* ~ . x, and will be directed towards the position of
Cu

rest. The bullet will, therefore, move up and down in simple

harmonic motion, and as

mg 4?r
2m

~d~ "f2"'

the period of its motion is given by

T= 27T

ff

44. Moment of a Force. The moment of a force about

any point is denned as the product of the magnitude of the force

into the length of the perpendicular from the point on to the

* The force causing unit elongation of the cord is denoted by ~ ; the

force resulting from a change, x, in the elongation is, therefore, denoted

by^.a.
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line of action of the force. Thus, in Fig. 50, if a force of

magnitude, F, act along the line AB the moment of the force

round the point O is measured by the product of F into the

length of the perpendicular OP. That is, if the moment of the

force be denoted by M, and the length of OP by d, we have

M = Fd. The moment of the force F about the point thus

depends upon F, the magnitude of the force, and d, the length of

the arm OP, and if either of these quantities is zero the moment

is zero. When d is zero the point is on the line of action of

the force, so that the moment of a force round any point on its

line of action is zero.

If the force F be supposed to act on a rigid body free to

rotate round a fixed axis passing through O at right angles to

the plane of the paper, the force tends to produce rotation of

A P B

Fig. 50.

the body round this axis, and the moment of the force round

may be taken as a measure of the effect of the force in tending

to produce rotation round the axis passing through 0. In order

to distinguish between the two possible directions of rotation a

moment is considered to be of positive sign if it tends to produce

rotation in a direction opposite to that of the hands of a clock,

and of negative sign if it tends to produce rotation in the same

direction as the hands of a clock.

It can be shown by experiment that two forces acting on

the same body and tending to produce rotation in opposite

directions round the same axis, will balance each other exactly

if their moments round the axis of rotation are of equal

magnitude. This shows that the moment of a force round a
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point is a real measure of the effect of the force in tending to

produce rotation round the point. It follows also from this

that if a number of forces
*

act on a body tending to produce

rotation round the same axis, the total equivalent moment of

the system of forces round the axis is the algebraic sum of the

moments of the individual forces round the axis.

Experiment 4. Take a flat strip of wood, such as a half -metre

scale, and balance it on a knife-edge placed horizontally at right

angles to the length of the scale. Now take masses of 100 grammes
and 200 grammes and suspend them from the scale, one on each side of

the knife-edge, by means of threads. The threads should be looped at

their upper ends, so that the masses can be suspended by passing the

loop over the scale. Adjust the positions of the masses on the scale

until an exact balance is obtained and the scale balances on the knife-

edge in a horizontal position. This is most conveniently done by

setting the loop of the thread carrying the smaller mass at any con-

venient distance from the knife-edge and then sliding the loop of

the thread carrying the other mass along the scale until a balance is

obtained. It will then be found that the distances of the suspension

loops from the knife-edge are inversely proportional to the masses

carried by these loops. That is, if d^ and d.2 denote the distances from

the knife-edge of the points of suspension of the 100 grammes mass

and the 200 grammes mass respectively, then dl : dz : : 2 : 1, and it will

be found on trial that this relation is true for all corresponding values

of t/j and d.2 . Similarly, it may be found by trial with other masses

that the distances d
l and d% are always inversely proportional to the

masses. That is, m^ and m.2 denote the masses, we always find that

dL : d.2 : : m.2 : m^ This experiment proves that moments tending to

produce rotation round the same axis balance each other when they
are of equal magnitude.
The scale is a rigid body free to rotate about the knife-edge as axis,

.and the weights of the suspended masses acting on it at the points

of suspension tend to produce rotation round this axis in opposite

directions. The axis is horizontal, and the weights act vertically, so

that the weight of each mass acts in a plane at right angles to the

axis. Hence, when the scale is horizontal, the moment of the weight

* Each force is supposed to act in a plane at right angles to the axis, so

that the forces considered are either all in the same plane or in parallel

planes.
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of each mass round the axis is the product of the magnitude of the

weight into the distance of the point of suspension of the mass from

the knife-edge. If, therefore, the masses are denoted by m and m*,

and the distances of the points of suspension of these masses from the

knife-edge by dl and^2 respectively, the moments of the weights of

the masses round the knife-edge are given by m 1gdl
and mgdz , where

g denotes the acceleration due to gravity. Hence, if these moments

are equal when a balance is obtained, we should have

This, however, is the result actually obtained by the experiment. It

may, therefore, be considered as established that forces of equal
moment round any axis have equal effects in tending to produce
rotation round that axis.

Fig. 51.

This principle, established by this experiment, is sometimes called

the principle of moments.

If the force F in Fig. 50 is represented as in Fig. 51 by
a length QR taken on its line of action, AB, the moment of the

force round the point O will be represented by twice the area of

the triangle QOR. For, by definition, the moment of the force

round O is measured by the product of the measure of QR into

the measure of OP, and this product is also the measure of twice

the area of the triangle QOR.
It will be seen that, in dealing with forces whose lines of

action all lie in the same plane, the moments of the forces round

an axis at right angles to the plane become the moments of the

forces round the point at which the plane cuts the axis.



FORCE. 117

45. Motion Of Rotation. If a body rotates round an axis

with angular acceleration a, the linear acceleration of a particle of

the body at a distance r from the axis is ra, and the force acting

on the particle is mra, where m denotes the mass of the particle.

The direction of the linear acceleration of the particle is tangen-

tial to the circle in which it moves round the axis, so that the

direction of the force acting on the particle is also along the

tangent to this circle. The moment of the force acting on the

particle round the axis of rotation is, therefore, measured by
mra . r or mr2

a.

Now the moments of the forces acting on the particles of the

body are all in the same direction, so that the total moment to

which the body is subject can be obtained by simply adding

together the moments for all the particles of the body. Hence,

if mv m.2,
m

3 ,
m . . . denote the masses of the particles

which make up the body, and rv r
z ,

r
3,

r
4 . . . denote

respectively the distances of these particles from the axis of

rotation, the total moment of the forces acting on the body
round the axis of rotation is given by

G =
niji'i

2a + m.
2r.2

2a + %?'3
2a -f . . .

or G = a [m^i
2
-f m.

2r.f -f msr/ + . . .
].

The quantity [m^\
2
-f w 2r2

'2 + W
3
r
3
2 + . . .

]
is the

sum of all the products obtained by multiplying the mass of

every particle in the body into the square of its distance from

the axis of rotation. It is called the moment of inertia of the

body round the axis of rotation.

If this quantity be here denoted by I, we have

G = la.

This is the relation which corresponds, in the case of motion

of rotation, to the relation, F = ma, in the case of motion of

translation.

It should be noted that G denotes the moment of the force
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acting on the body, taken round the axis of rotation, I denotes

the moment of inertia of the body round the axis, and a denotes

the angular acceleration of the body.

46. Impulse. It 4ias now been established that when a

body of mass m moves with acceleration a, the force acting on

the mass is given by the relation, F = ma, in units consistent

with those in which m and a are expressed.

It has also been explained in Art. 36 that this relation is

equivalent to the statement that the force acting on a body
is measured by the time-rate at which the momentum of the

body changes. That is, the force acting on a body at any

instant is measured by the rate of change of momentum of the

body at that instant.

In the case of some forces, however, it is practically impossible

to apply this method of measurement. If a force acts on a

body for a very short interval of time and, it may be, is not even

constant during that interval, it is impossible to determine the

rate of change of momentum which it produces in the body at

any instant.

For example, when a golf club strikes a ball the time during

which the club acts on the ball is so very short that it is prac-

tically impossible to determine the force exerted on the ball at

any instant by the rate of change in its momentum at that instant.

A force of this kind is called an impulsive force, and is usually

measured, not by the rate of change of momentum which it

produces, but by the total change of momentum which it

produces in the body on which it acts. The total change of

momentum produced by an impulsive force is called an impulse.

Thus, if a golf ball of mass m is struck by a club, and leaves the

club with a velocity v, the impulse given to the ball is measured

by mVy and this is taken as the measure of the whole action of

the club on the ball during the stroke.

47. Impact of Inelastic Bodies. If a body of some

inelastic material, such as clay, is in motion, and strikes against
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another body of the same material at rest, or also in motion, the

bodies do not rebound from each other after the impact, but

adhere together, and, if free to move, move on as one mass.

Suppose an inelastic body, A, of mass mv moving with uniform

velocity v
lt

to overtake another inelastic body, B, of mass m2

moving in the same direction with velocity v2 ;
and that after

the impact the two bodies move on as one mass with velocity v,

in the same direction as before. It will be clear that during

the time of impact the one mass acts impulsively on the

other in accordance with Newton's second law of motion
;
the

forward impulse communicated by A to B is (m,2v m2#2), or

m
2 (v v.-,),

and the backward impulse communicated by B
to A is (m^i m^), or mx (vx v), and these two impulses

being related as
" action

"
and " reaction

" must be equal. That

is, we have

m2 (v v.2 )
=

raj (i\
-

v) ;

Or m^} + ni"2v2 (
m

i ~^~ m-2)
v '

This result shows that the total momentum of the two bodies is

unchanged by their impact. The total momentum of the bodies

before impact is (m 1
vl + ?ft^2), and the total momentum after

impact is (m-i + m
2) v, and the relation obtained above shows

that these two quantities are equal.

This result is an example of the general principle of conserva-

tion ofmomentum. This principle states that the total momentum

of an isolated system of bodies is constant, and cannot be changed

by any mutual action between the bodies. The principle follows

directly from the second law of motion, for if mutual force takes

place between any two bodies of the system, the momentum

which one gains will be exactly equal to the momentum which

the other loses, and the total momentum of the system will

remain unchanged by this transfer of momentum from one body

to the other.

In applying the principle to simple cases of direct impact
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between inelastic bodies, it must be remembered that momentum

is a vector quantity, and that it is necessary, therefore, to dis-

tinguish between momenta in opposite directions by difference

in sign.

Examples. 1. An inelastic body of 20 grammes mass, moving with

a velocity of 10 cms. per second, meets another inelastic body of

10 grammes mass moving in the opposite direction with a velocity of

35 cms. per second, find the velocity of the combined masses after the

impact.

Here, if we take the momentum of the first body of 20 grammes mass

to be positive in sign, the momentum of the other body moving in the

opposite direction will be negative, and the total momentum before

impact is given by

{(20 x 10)
-

(10 x 35)} units;

or - 150 units (cm. gramme).

That is, 150 units in the same direction as the momentum of the

body of 10 grammes mass. Hence, if v denote the velocity of the com-

bined masses after impact, we have

30 v = -
150,

or v = - 5.

That is, the combined masses move after impact in the same

direction as the body of 10 grammes mass, with a velocity of 5 cms.

per second.

2. A bullet of 20 grammes mass is fired from a rifle of 4,000 grammes
mass, and leaves the barrel with a velocity of 30,000 cms. per second.

If the rifle when fired is suspended freely, with its barrel in a

horizontal position, find the initial velocity of its recoil.

Here the system considered is made up of three bodies, if we

neglect the suspension strings, cartridge case, wads, etc. These

three are the rifle, the bullet, and the charge of powder, and of these

we may neglect the charge of powder, since no data are given

respecting it.

Considering only the rifle and the bullet the momentum before

firing is of zero value.

After firing, if we take the momentum of the bullet to be positive,

the total momentum of the two bodies is

20 x 30,000 - 4,000v,

where v denotes the initial velocity of the recoil of the rifle.
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We, therefore, have

600,000- 4,000 1>=0,

or, 4,000 v = 600,000.

That is, v = 150.

The initial velocity of the rifle in recoil is, therefore, 150 cms. per

second.

This question may also be solved by assuming that the charge of

powder when exploded gives equal impulses in opposite directions to

the bullet and the rifle.

This assumption at once gives

4,000 v = 600,000,

or v = 150, as before.
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CHAPTER X.

WORK AND ENERGY.

48. Work. When the point at which a force acts is dis-

placed, work is said to be done, either by the force or against

the force.

If the displacement is along the line of action of the force,

then work is done ly the force if the direction of the displacement

is the same as that of the force, and work is done against the

force if the direction of the displacement is opposite to that of

the force.

F

A B~ ~X
Fig. 52.

Fig. 53.

Thus, let a force F be supposed to act at a point A along AX,
and let the point of application be displaced from A to B along

the line of action of the force. Then if the direction of the

displacement AB is the same as that of the force, as in Fig. 52,.

work is done by the force. If, however, the direction of the

displacement AB is opposite to that of the force, as in Fig. 53,

work is done against the force.

If the displacement is not along the line of action of the force,

but inclined to it, then work is done by the force or against the

force, according as the component of the displacement along the line

of action of the force is in the same direction as the force, or in

the opposite direction.
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Thus, let a force F be supposed to act at a point A in a

direction AX, and let the point of application be displaced from

A to B in a direction inclined to the line of action of the force.

Then, if the direction of A&, the component of the displacement

AB, along the line of action of the force is in the same direction

as the force, as in Fig. 54, work is done by the force. If, how-

ever, the direction of the component Ab is opposite to that of

the force, as in Fig. 55, work is done against the force.

The work done by or against a force is measured by the

A lr X ^
Fig. 54.

product of the magnitude of the force into the displacement or

its component along the line of action of the force.

Thus, if the point of application of a force F is displaced

through a distance s along the line of action of the force in the

lr A

Fig. 55.

same direction as the force, then W, the work done by the force,

is given by W = Fs.

That is, if a force F acts through a distance s, the work done is

given by W = FA

Similarly, if the point of application is displaced through a

distance s in the direction opposite to that in which the force

acts, the work done against the force is given by W = F*'.
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If the displacement s be taken as positive when in the

same direction as the force, and negative when in the opposite

direction, work done by the force will be positive in sign, and

work done against tha force will be negative in sign.

When the point of application of a force is displaced through
a distance s in a direction making an angle with the direction

of the force, as in Fig. 56, the component of the displacement in the

direction of the force is s . cos 0, and the work done by the force

is given by

W = F . s cos 0.

The same result is obtained if we consider F cos 0, the com-

ponent of the force in the direction of the displacement to act through
the displacement s, for the work done by the force F cos

acting through a distance s is given by

W = F cos . s.

It should be noticed that when the point of application of a

force is displaced in a direction at right angles to the direction of

the force, no work is done by or against the force.

If two forces act on a body in opposite directions along the

same line, and the body is displaced in the direction of one of

the forces, work is done by one force against the other. Thus,

if two forces, P and F, act on the body in opposite directions,

and the body is displaced through a distance s in the direction

of the force P, then the work done by the force P is Ps, and the

work done against the force F is Fs.

In this case, if we assume P and F to be the only forces acting
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on the body, the work done on the body is given by (Ps Fs).

That is, if we consider work done to be positive when done by a

force, and negative when done against a force the work done on a

body during any translational displacement of the body is the

algebraic sum of the work done by all the forces acting on the

body.

Work is a scalar quantity and not a vector quantity. That is,

in the measurement of work we have to deal with magnitude

only, without reference to direction.

49. Units Of Work. The unit of work is derived from the

unit of force and the unit of length. It is the work done when

unit force acts through unit distance.

Hence, in the C.G.S. system the unit of work is the work

done when a force of one dyne acts through a distance of one

centimetre. This unit of work is called an erg.

The unit of work in the English F.P.S. system is the work

done when a force of one poundal acts through a distance of one

foot. This unit of work is called a foot-poundal.

Work is very commonly expressed in gravitational units, in

which the unit of force taken is the weight of unit mass.

The work done when the iveight of one gramme acts through a

distance of one centimetre, is called a centimetre-gramme, and is

equal at any place to g ergs, where g is the acceleration due to

gravity at that place. That is, in London a centimetre-gramme is

equal to 9 80 '6 ergs. Similarly, the work done when the weight

of one pound acts through a distance of one foot is called a foot-

pound, and is equal at any place to
// poundals, where g is the

acceleration due to gravity at that place. That is, in London a

foot-pound is equal to about 32'IS foot-poundals.

From these definitions of units of work, it will be seen that

the work done against the weight of the mass in lifting a mass

of M grammes through a vertical distance of h centimetres is Mh

centimetre-grammes, or M.hg ergs.

Similarly, the work done in lifting a mass of M pounds
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vertically through a distance of h feet is M/a foot-pounds, or

M/M/ foot-poundals.

The dyne being a very small unit of force, the erg is a very

small unit of work. For example, the work done in lifting this

book from the floor on to a table would be something like

twenty million ergs. A larger unit, called a joule, containing

ten million, or 10 7
ergs is, therefore, sometimes used.

It can be calculated from the relations already given that

1 foot-poundal = 4'214 X 105
ergs,

and 1 foot-pound = 12,283 centimetre-grammes =

1-356 x 107
ergs= 1 -356 joules.

For rough purposes it may be remembered that a joule,

or 10 7
ergs, is nearly three-quarters of a foot-pound.

50. Energy. Energy is capacity for doing work as defined

in the foregoing article.

A body may possess energy in virtue of being in motion, for

a body in motion is able to do work against an opposing force

until it comes to rest.

A body may also possess energy in virtue of the configuration

of its parts. A compressed spiral spring, for example, possesses

energy in virtue of the configuration which constitutes its com-

pression, for it is able to do work against an opposing force in

expanding.

A system of bodies which exert force mutually on each other

may, in the same way, possess energy in virtue of the configura-

tion of the system. For, if the system resists any change of

configuration impressed on it by the action of an external force,

it will be able to do work against an external force in recovering

its original configuration.

It will be seen that when a body in motion does ivork against a

force acting on the body, it loses energy, but if work is done by
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a force acting on the body in increasing its momentum, it gains

energy. In either case the loss or gain of energy is measured l>y the

work clone by or against the force.

Similarly, when a body, or system of bodies, does ivork against

an external force in undergoing a change of configuration, the

body, or system of bodies, loses energy by the change, but if

work is done by an external force in producing a change of con-

figuration, then the body, or system of bodies, gains energy by

the change. In either case the loss or gain of energy by the body,

or system of bodies, is measured by the work done by or against the

.external force.

Energy is thus measured as work, and the units employed in

its measurement are the same as those employed for the

measurement of work.

The energy which a body possesses in virtue of its motion is

called kinetic energy, and the energy which a body, or system of

bodies, possesses in virtue of configuration, is called potential

energy.

It will be found that in the measurement of energy we are

generally called upon to measure the energy which a body,

-or system of bodies, gains or loses, and not the whole energy

which the body, or system of bodies, may possess.

51. Kinetic Energy. As stated above, the energy

which a body possesses in virtue of its motion, is called

kinetic energy.

If a body of mass m moves from rest, with motion of transla-

tion under the action of a constant force F, the body moves with

uniform acceleration along a straight line in the direction in

which the force acts. If the force be allowed to act on the body

through a distance s, the work done by the force is Fs, and this

is also, as explained above, the measure of the kinetic energy

gained by the body.

But if a denote the acceleration of the body, and v the

velocity it acquires in moving over the distance s, we know that
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F = ma, and also, by the relation given in Art. 29, that

v2 = 2as. That is,

&
.b = ma, and s =

^-.

iy2 mv2

It follows, therefore, that Fs = ma .
=

.

Jft 2

That is, the kinetic energy of a body of mass m moving with-

out rotation with a velocity v, is given by -|
mv2

. This may be

written in the form

K.E. =
J mv

2
.

If m is expressed in grammes, and v in cms. per second, the

kinetic energy is expressed in ergs. Similarly, if m is expressed

in pounds, and v in feet per second, the kinetic energy is

expressed in foot-poundals.

In the same way if a body of mass m, moving without

rotation under the action of a constant force, F, acting in the

direction of motion, changes its velocity from u to v in moving
over a distance, s, the work done by the force is Fs, and this is

also the measure of the kinetic energy gained by the body as it

moves over the distance s, and its velocity changes from u to v.

But, as above, if a denote the acceleration of the body we know

that F = ma, and also that v2 = u2
-f- 2as, or v2 -- u2 = 2as+

That is,

TJ,
^ - "2

= ma, and s -
(Za

It follows, therefore, that

v* - uz m (v
2 - u2

)-"* ir nr-

That is, the kinetic energy gained by the body is -
/

or | mv2 mu'2 ;

This result is in accordance with that obtained above, for if

we take the kinetic energy of the mass to be
-^
mv2 when moving
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with a velocity v, and J mu2 when moving with a velocity u, the

gain of kinetic energy when the velocity increases from u to v is

evidently J mv2 mu2
,
as obtained above. Similarly, when

the velocity of the mass decreases from u to v, the loss of

kinetic energy is given by ^ mu2

Examples. 1. A body of 10 Ibs. mass is moving without rotation,

with a velocity of 64 ft. per second, find its kinetic energy in foot-

pounds.
The kinetic energy of the mass is given by the relation

K. E. = mv*.

That is, K.E. = & . 10 x 642

= 20,480.

Since m is expressed in pounds, and v in feet per second, the kinetic

energy will be in foot-poundals.

The kinetic energy of the mass is, therefore, 20,480 foot-poundals,

or, if we take the acceleration due to gravity as 32 feet-per-sec.

. 20,480
per sec., the kinetic energy is ^ ,

or 640 foot-pounds.

2. A mass of 1 kilogramme moving without rotation does work

against a constant opposing force through a distance of 1 metre, and

in doing this work its velocity is reduced from 500 cms. per sec. to

400 cms. per second ; find the amount of work done against the

opposing force, and also the magnitude of this force.

From the data of the question, the mass of the body is 1,000

grammes, and its velocity is reduced from 500 cms. per sec. to 400

cms. per sec., in doing work against the opposing force. The kinetic

energy lost by the body in doing this work is given, therefore, in ergs

by the relation

Loss of K.E. =

m (a
2 - v2)

~2~
1,000 (500

2 - 4002
)

L

~2~
= 45,000,000.

That is, the loss of kinetic energy is 45,000,000 ergs, or 4 '5 joules.

If the opposing force against which work is done, be denoted by
F in dynes, the work done in overcoming this force through a distance

9
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of 1 metre, or 100 cms., is (F x 100) ergs, and we have, therefore,

1OOF -45,000,000,

or F = 450,000.

450 000
That is, the force is et^ual to 450,000 dynes, or gramme-weights,"81

if we take the value of
<j to be 981 cms.-per-sec. per sec. That is, the

force is approximately equal to the weight of 458 '7 grammes.

It is important to note that the kinetic energy given by

J mv2 for a body of mass m, moving with a velocity v, is the

kinetic energy of the body relative to a particular point. The

velocity of the body is measured relative to this point, and the

displacement of the point of application of any force acting on

the body is its displacement relative to this point.

For example, if a body of mass m moves without rotation

inside a railway carriage, with a velocity v relative to the

carriage, its kinetic energy, or its energy of motion relative to the

carriage, is given by I- mv1
if, however, the velocity of this

body, relative to a point on the earth's surface, is denoted by V,

then its kinetic energy relative to this point is given by ^ mV2
.

In the one case the body could, in coming to rest relative to the

carriage, do \ mv2 units of work against a force applied by an

agent in the carriage and moving with the carriage ;
in the other

case the body could, in coming to rest relative to the point on

the earth's surface, do J mV2 units of work against a force

applied by an agent at this point.

When it is stated that the kinetic energy of a body of mass

m, moving without rotation with a velocity v, is ^ mv
2

,
the

velocity v is usually understood to mean the velocity of the

body relative to a point on the earth's surface at the place

where the body is in motion, and the kinetic energy, J mv
2
,

is the kinetic energy of the body relative to this point.

A body on the surface of the earth possesses kinetic energy in

virtue of its motion as part of. the earth. This energy cannot,

however, be expended in doing work except against an external
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force applied by a body or agent external to the earth. That is,

the kinetic energy which a body possesses in virtue of its motion

as part of the earth is zero relative to the earth, although it may
be very great relative to an external point.

52. Potential Energy. It has been explained that a body,
or system of bodies, may possess energy in virtue of its con-

figuration, and that energy due to configuration is called

potential energy.

Thus, when a spring is compressed, work is done against the

elastic resistance which the spring offers to compression, and

the spring gains energy. Similarly, when the compressed spring

expands it is able to do work against an external force opposing

its expansion, and so loses energy. The spring thus gains and

loses energy by change of configuration, and may, therefore,

possess energy in virtue of its configuration.

In the same way a strip of steel, or wood, or any elastic

material, gains energy when its configuration is changed by

bending it or twisting it, and is able to do work against an

external force in recovering its original configuration. It may,

therefore, like the spring possess energy in virtue of its con-

figuration.

Change of configuration produced against the resistance offered

by the body in virtue of its elasticity* is usually called strain.

It may, therefore, be said that any elastic body may possess

energy of configuration in virtue of any strain which may be set

up in it. This form of energy is generally called energy of

strain, and is a form of potential energy.

The most important case of potential energy which we have

to consider, however, is the energy which a system made up of

the earth and a body on, or near, its surface, possesses in virtue

of its configuration.

The two bodies the earth and the body near its surface

mutually attract each other, so that if the distance between
* See Chapter xvii.
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them is increased, work is done against this mutual force of

attraction, and the system gains energy by the change of con-

figuration. For example, if a body on the surface of the earth

is raised vertically upwards, so as to increase its distance from

the earth, work is done against the force with which the earth

attracts it, that is, work is done against its weight, and the system

made up of the earth and the body gains a quantity of energy

equal to the work done in raising the body against its own

weight. This gain of energy is due to the change in the

configuration of the system; it is sometimes spoken cf as the

potential energy gained by the body in virtue of its change of

position relative to the earth.

In the same way if a body on the surface of the earth falls

vertically downwards, so as to decrease its distance from the

earth, work is done by its weight, and the system made up of the

earth and the body loses potential energy equal to the work

done. This loss of energy is due to the change in the con-

figuration of the system, and is commonly spoken of as the

potential energy lost by the body in virtue of its change of

position relative to the earth.

It should be noticed in this case that if the falling body does

no work against an external force, the potential energy it loses

is expended in doing work on the body itself by setting it in

motion, and thereby produces an amount of kinetic energy

exactly equal to the potential energy lost. If, however, the

falling body does work against an external force, the potential

energy it loses is wholly or partially expended in doing this

work, and is thereby wholly or partially transferred to another

body, or system of bodies.

When the potential energy lost by the body is only partially

expended in doing work against an external force, the remainder

is expended in setting the body in motion, and thereby produces,

as explained above, an equal amount of kinetic energy.

For example, if two masses, A and B, of which A is the
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greater, are slung by a string over the wheel of an Atwood's

machine, the weight of A in falling does work against the

weight of B in raising it. The potential energy lost by A in

falling is thus expended, partly in doing work against the

weight of B, and partly in setting A and B in motion. The

portion expended in doing work against the weight of B

produces an increase in B's potential energy, equal to the amount

so expended, and the portion expended in setting A and B in

motion produces an amount of kinetic energy also equal to the

amount so expended. The potential energy lost by A in falling

is thus transferred, partly to B as increase of its potential energy,

and partly to A and B as kinetic energy.

The potential energy which a body is said to possess, in

virtue of its position relative to the earth, is really the potential

energy which the system made up of the body and the earth

possesses in virtue of its configuration. It is, however, convenient

to consider the energy as the energy of the body, and it is

usually called the gravitational potential energy of the body.

It has been shown that when a body of mass m is raised

through a vertical distance li at any place, the work done against

its weight is measured by mgh, where g denotes the acceleration

due to gravity at the place.* The potential energy gained by
the mass will, therefore, also be measured by mgh. That is,

when a body of mass m is raised through a vertical distance h at

any place, the increase in the gravitational potential energy of

the body is equal to the work done against the weight of the

body in raising it, and is given by mgh, where g denotes the

acceleration due to gravity at the place. Similarly, when a body
of mass m falls through a vertical distance h at any place, the

decrease in the gravitational potential energy of the body is equal

to the work done by the weight of the body in falling, and is

* The distance h is supposed to be so small, compared with the radius

of the earth, that the weight of tire body may be assumed to be constant

over the whole distance.



134 C4ENERAL PHYSICS.

measured by mgh, where g denotes the acceleration due to gravity I

at the place.

For example, if a body of 10 pounds mass is raised through a

vertical distance of 1 (} feet, at a place where the acceleration due i

to gravity is 32*18 feet-per-sec. per sec., the increase in the

gravitational potential energy of the body is 10 x 10 x 32*18
|

foot-poundals, or 3218 foot-poundals. The increase in the

potential energy of the body may also be expressed as (10 x 10),

or 100 foot-pounds, a foot-pound in this case being equal to

32-18 foot-poundals.

Similarly, if a body of 500 grammes mass falls through a vertical

distance of 100 cms. at a place where the acceleration due to

gravity is 981 cms.-per-sec. per sec., the decrease in the gravita-

A -

Fig. 57. Fig. 58.

tional potential energy of the body is 500 X 100 X 981 ergs, or

49.050,000 ergs or 4*905 joules. The decrease in the potential

energy of the body may also be given as (500 X 100), or 50,000

centimetre-grammes, a centimetre-gramme in this case being equal

to 981 ergs.

It should be noticed that the work done in raising a body
from a point A to a point B through a vertical distance h is the

same whether the body is raised directly along the vertical at A,

as in Fig. 57, or follows any other path through the same

vertical distance, as in Fig. 58. The weight of the body acts

vertically, so that the work done is given by the product of the

weight into the 'vertical displacement, whatever may be the actual

path of displacement.
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53. Forms Of Energy. The energy which any body, or

system of bodies, possesses can always be classified as kinetic

energy, or potential energy, or a combination of these two

general forms of energy.

There are, however, a number of special cases or forms of

energy which should be noticed.

Thus, kinetic energy, or energy of motion, presents two

important cases in the energy of a body in motion without

rotation, and the energy of a body in rotation round an axis.

The first of these two cases is dealt with in Art. 51, the second

in Art. 59.

The energy of a body in vibratory motion is a combination of

kinetic energy and potential energy. For example, the energy

of the bob of a simple pendulum in vibratory motion (Art. 34)

is, in general, partly kinetic energy, and partly gravitational

potential energy. The energy which the bob possesses at any

instant during its vibration in excess of the energy it possesses

when at rest, is the energy which the body possesses as energy of

vibration. When the bob is at either of the extreme points in

its path this energy is wholly gravitational potential energy, and

when the bob is at the lowest point in its path the energy is wholly

kinetic energy, but at any other point in its path the energy is

partly potential and partly kinetic. As the bob falls from either

of the highest points in its path to the lowest point, it loses

potential energy and gains kinetic energy, and as it passes from

the lowest point to either of the highest points, it loses kinetic

energy and gains potential energy. The total energy of the bob

thus remains constant, except in so far as it is diminished by

doing work against external forces, such as air resistance or

friction.

The energy of wave motion * is another form of energy which

is partly kinetic and partly potential. The particles of the

* See Chapter iii. in Part II. on Sound, and Chapter i. in Part III. on

Light.
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medium through which the wave motion is propagated are in

vibratory motion, and the medium itself is subject to strain
;

the energy of the motion must, therefore, be in part kinetic

energy, and in part potential energy of strain. Sound* may
be considered as longitudinal wave motion in material media, so

that sound as a form of energy is energy of longitudinal wave

motion in material media. Light
*

is transverse wave motion in

the ether, and light as a form of energy is, therefore, the energy

,of transverse wave motion in the ether.

Any piece of matter may be considered as a system of

molecules held together by the action of intermolecular forces.

The piece of matter may, therefore, possess molecular potential

energy in virtue of its molecular configuration or state of aggre-

gation, and as the molecules are not at rest but in motion, it

may also possess molecular kinetic energy in virtue of the motion

of its molecules.

It is generally agreed that the molecular kinetic energy of any

body constitutes the heat of the body. Heat as a form of

energy must, therefore, be considered as molecular kinetic

energy.

The molecular potential energy of a body cannot be so

definitely labelled. It is known, however, that when a sub-

stance changes its state of aggregation from the solid state to

cthe liquid state, or from the liquid state to the vapour state, it

absorbs a quantity of energy in the form of heat, which is

in part expended in supplying the increase of molecular poten-

tial energy which attends the change of state. Thus a gramme of

ice at C. absorbs a quantity of heat equivalent to 336 joules

of energy in changing into a gram of water at C., and thus

provides for the increase of molecular potential energy which

attends the change from solid ice to liquid water.

The heat thus absorbed at change of state is known as latent

* See Chapter iii. in Part II. on Sound, and Chapter i. in Part III. on

Light.
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heat. It may be noticed that since a substance always absorbs

latent heat in changing from the solid state to the liquid state,

and from the liquid state to the vapour state, it follows that

the molecular potential energy of a substance is greater in the

liquid state than in the solid state, and greater still in the

vapour state than in the liquid state.

Just as a piece of matter may be considered as a system of

molecules held together by intermolecular forces, so a molecule

may be considered as a system of atoms held together by inter-

atomic forces. A molecule may, therefore, possess potential

energy in virtue of its atomic configuration, and atomic kinetic

energy in virtue of the motion of its atoms.

The atomic energy of molecules constitutes what is known as

chemical energy. Thus, in the chemical reaction represented

by the equation

Zn + H2S04
= ZnS04 + H

2 ,

the atomic energy of the molecules, Zn + H
2
S04 ,

is greater than

the atomic energy of the molecules, ZnS04 -f- H.,, and the loss of

chemical energy which attends the reaction is evolved as heat.

Recent research goes far to show that atoms are not, as they

were thought to be, the ultimate particles of matter, but are

themselves more or less complicated systems of particles. On

this view, therefore, an atom may possess potential energy in

virtue of the configuration of its constituent particles, and kinetic

energy in virtue of the motion of these particles. The phenomena
of radioactivity are supposed to be manifestations of this form

of energy.

All the forms of energy referred to above, with the exception

of light energy, are associated with matter as energy of motion,

or energy of configuration of some material system. It is con-

ceivable, however, that energy is associated in similar ways with

ether. The energy of light and radiation generally is known to

be energy of transverse wave motion in the ether
;

electrical
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and magnetic phenomena are manifestations of different forms of

energy of strain and motion in free ether, and in ether associated

with matter; and gravitational potential energy is probably a

form of energy in the ether.

54. Conservation of Energy. It will be seen from what

has been said above that when energy is lost or expended in

doing work, an equal amount of energy is gained or produced as

the equivalent of the work done. Thus, a body, or system of

bodies, may lose energy in one form, and gain an equal amount

of energy in some other form
;
or a body, or system cf bodies,

may lose energy by doing work on some other body, or system

of bodies, which thus gains an equal amount of energy as the

equivalent of the work done on it.

When a quantity of energy is lost or expended in this way in

one form, and is gained or produced in some other form, it i.s

said to be transformed, or to undergo transfwmation, but what-

ever the nature of the transformation may be, the quantity of

energy produced is always equal to the quantity expended or

lost.

Thus, when a body falls freely through any distance it loses

an amount of gravitational potential energy equal to the work

done by the weight of the body during the fall, and gains an

amount of kinetic energy also equal to the work done by the

weight ;
that is, the body loses a quantity of gravitational

potential energy, and gains an exactly equal quantity of kinetic

energy.
*

Similarly, in the case of the bob of a simple pendulum in

vibration : the bob loses gravitational potential energy, and gains

kinetic energy in falling, and it loses kinetic energy and gains

gravitational potential energy in rising. In moving over any

*It would be more correct to say that the system made up of the earth

and the body loses a quantity of gravitational potential energy (the energy
of the configuration of the system), and the masses of the system gain an

equal quantity of kinetic energy.
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portion of its path, however, the energy lost in one form is

exactly equal to the energy gained in the other form, each

being equal to the work done by or against the weight of

the bob. The vibration energy of the bob thus remains

constant,* but is subject to periodic transformation from potential

energy to kinetic energy, and from kinetic energy to potential

energy.

In the same way when a body in falling raises another body,

the potential energy lost by the falling body is equal to the poten-

tial energy gained by the body raised, together with the kinetic

energy gained by the two bodies. The total energy of the two

bodies considered as one system thus remains constant.

In general, therefore, it may be stated that when a body, or

system of bodies, A, does work on another body, or system of

bodies, B, the body or system A loses energy in some form, and

the body or system B gains energy either in the same form or

in some other form or forms, and the energy lost by A is

exactly equal to the energy gained by B. The energy which A
loses is 'equal to the work done by the force which A exerts on

B, and the energy which B gains is equal to the work done

against the force which B exerts on A
;
and as these two forces

are equal and opposite in direction by Newton's second law of

motion, it follows that the work done by the one must be equal

to the work done against the other, and the energy lost by
A must, therefore, be equal to the energy gained by B.

Hence, if we suppose a number of bodies, or systems of bodies,

to be in dynamical communication with each other, but to be

completely isolated from all other bodies, it is evident that the

total amount of energy in the complete system must remain

constant and unchangeable. Any portion of the energy of the

system may undergo any of the transformations of which energy
is capable, or may be transferred from any part of the system to

* The work done against air resistance, etc., is here neglected. See

below.
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another part, but whatever quantity of energy disappears in one

form an exactly equal quantity reappears in another form
;
or

whatever quantity disappears at any point in the system an

exactly equal quantity*reappears at another point. That is, the

total quantity of energy in the complete system is constant and

unchangeable, and cannot be increased or diminished in any

way.

This is the principle known as the principle of conservation

of energy. Maxwell states this principle in the following form.

The total energy of any material system can neither be Increased

nor diminished by any action between the parts of the system, though

it may be transformed into any of the forms of which energy is

susceptible.

It should be noticed that in this statement the words,
"
by

any action between the parts of the system'' implies that the system

is supposed to be free from the action of all bodies external to

itself. If any external body were allowed to do work on the

system it would gain energy, and if the system were allowed to

do work on any external body it would lose energy, but if the

system, however complex or extensive it may be, is completely

isolated from all external bodies, it can neither lose nor gain

energy.

If we consider the total universe, of which we have cognisance

to be isolated from the action of all bodies external to it, the

principle of conservation of energy states that the total quantity

of energy in this universe is constant and unchangeable.

The transformations which energy undergoes in the world

around us are almost endless in their variety.

Instances have already been given in which gravitational

potential energy is transformed into kinetic energy, and kinetic

energy into potential energy. Other instances will readily

occur to the reader. When a body is falling freely its gravita-

tional potential energy is being transformed into kinetic energy,

and when the body strikes the ground and is brought to rest,



WORK AND ENERGY. 141

its kinetic energy is suddenly transformed into an equivalent

quantity of heat.

When a bullet strikes an iron target and is flattened against

it, work is done against molecular forces in flattening the bullet,

and the kinetic energy of the bullet is thereby converted into

heat in the bullet. When a bullet strikes a piece of wood and

penetrates it, work is done by the bullet against molecular

forces and against friction, and the kinetic energy of the bullet

is transformed into heat. This heat is primarily produced where

the work is done in the shattered wood and at the surface of the

bullet, but much of it passes by conduction into the bullet.

A simple pendulum in vibratory motion ultimately comes to

rest, because the energy which it possesses is gradually expended
in doing work against air resistance and friction, and also to a

small extent against molecular friction in the suspension thread

at the point where bending takes place. The energy of vibratory

motion which the pendulum possesses is in this way transformed

into heat in the air and in the thread.

The pendulum of a clock continues in motion because it

receives a regular supply of energy from the spring or weights

of the clock. If the clock is allowed to run down the pendulum
soon comes to rest in doing work against frictional resistance,

and its energy is thereby transformed into heat.

When a tuning fork is set in vibration it continues in vibra-

tion for some time, but ultimately comes to rest. During
vibration its energy is, as in all cases of vibration, subject to

periodic transformation from potential energy to kinetic energy,.

and from kinetic energy back again to potential energy, the

potential energy in this case being potential energy of bending

strain in the prongs of the fork.

As the vibration continues, however, the stock of energy

which the fork possesses is gradually expended in doing work

against molecular friction in bending the prongs, and also in

setting up longitudinal wave motion, or sound waves, in the
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surrounding medium. The energy expended in doing work

against molecular friction in bending the prongs, is transformed

into heat in the prongs. The energy expended in setting up

wave motion in the surrounding medium travels out from the

fork into the medium as energy of wave motion or sound, and is

ultimately expended in doing work against molecular friction in

the medium and thereby transformed into heat in the medium.

When the sun shines on the earth and warms it, the energy

of solar radiation that is, the energy of transverse wave motion

in the ether is transformed into heat in the earth. Energy is in

this way transferred from the sun to the earth.

When a piece of coal burns in air the chemical energy

liberated by the combination of the carbon and hydrogen of

the coal with the oxygen of the air is transformed into the heat

evolved by the combustion of the coal.

When the terminals of a voltaic cell, such as a Bunsen cell,

are joined by a wire, the chemical energy liberated by the

chemical reaction in the cell is transformed into electrical energy,

and an electric current is produced in the circuit of the cell

and the wire joining its terminals, and this energy is in turn

transformed into heat in the circuit through which the current

passes.

In all cases where work is done by muscular effort chemical

action goes on in the muscular tissue, and the action is of such

a nature that the tissue loses chemical energy. This energy is

-expended in doing work, and may thereby be transformed into

other forms of energy. Thus, when a man lifts a body he does

work against its weight, and the chemical energy expended in

the muscles in doing this work is transformed into an increase

in the gravitational potential energy of the body.

When a heat engine of any kind is in action, a proportion of

the heat produced by the combustion of the fuel in the engine

is expended in doing work, and is thereby transformed into

some other form of energy. For example, in the case of a rail-
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way engine, the heat expended in setting a train in motion is

transformed into the kinetic energy of the moving train.

Similarly, in the case of a gas engine used to drive a dynamo,

the heat expended by the engine in driving the dynamo is

transformed into the electrical energy produced by the

dynamo.
It is important to notice that although all other forms of

energy are readily transformed into heat, heat itself can be

transformed into other forms of energy only under certain

special conditions, such as obtain in a heat engine. It is found

that heat can be expended in doing work (and thereby trans-

formed into some other form of energy) only in passing from

one body, A, to a colder body, C, through an intermediate

working substance B. Of the heat which passes from A to B, a

portion must pass from B to C, but the remainder may, by the

action of B, be expended in doing work. For example, in a

steam engine, the steam as working substance (B) takes heat from

the boiler (A) and gives up heat to the condenser (C) but it

receives more heat from the boiler than it gives up to the

condenser, and by its action in the cylinder on the mechanism of

the engine it expends the difference in doing work. In any
heat engine a large portion of the heat produced by the com-

bustion of the fuel is lost by conduction, another portion is

passed on to the condenser, and a considerable portion is

expended in doing work against friction in the mechanism of

the engine, and is thereby converted into heat in the working

parts of the engine. It follows that the proportion of the heat

produced in the engine which is transformed into some other

form of energy is comparatively small.

It will be seen from what has been said that difference of

temperature is essential for the transformation of heat into

any other form of energy. Hence, if a system possesses energy
in the form of heat only, and if the temperature of the system
is uniform throughout, no portion of the energy of the system
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can undergo transformation of any kind. That is, the system
cannot expend any of its energy in doing work, or the energy of

the system is not available for doing work.

55. Dissipation Of Energy. Among the many trans-

formations of energy which go on around us, it will be noticed

that energy in every form is continuously undergoing trans-

formation into heat which passes by conduction into the earth.

This heat tends, by the process -of conduction, to distribute

itself, without difference of temperature throughout the mass of

the earth
;
in this form it merely adds to the store of heat

energy in the earth, and is not available for retransformation

into any other form of energy. This process must be going on

everywhere in the material universe where energy exists in

more than one form. It follows, therefore, since the total

quantity of energy in the material universe is constant and

unchangeable, that the supply of energy available for doing

work is steadily decreasing by transformation into heat which

cannot be expended in doing work.

The material universe is thus tending steadily to a state in

which the whole of the energy it possesses will be in the form

of heat, and the temperature throughout the system will be

uniform.

In this state no part of the energy of the universe can be

expended in doing work, and all the processes associated with

doing work by the action of force will be at an end.

56. Power OF Activity. Power or activity is the time-rate

at which work is done. Thus, if a quantity of work W is done

in a time t, then W/t is the average power or activity exerted.

For example, if a mass of 1 ton is raised through a vertical

distance of 120 feet in 7 minutes, the average power exerted is

2,240 x 120 .

- foot-pounds per second, or 640 foot-pounds per
i x 60

second.

In English units power is usually measured in horse-power.
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one horse-power being defined as a rate of doing work equal

to 33,000 foot-pounds per minute, or 550 foot-pounds per

second.

Example. A pumping engine pumps water from a depth of

400 feet at the rate of 120,000 gallons per hour. If the water leaves

the pump with a velocity of 2 feet per second, find in horse-power

the rate at which work is done on the water in raising it.

The mass of water raised per minute is

120,000 x 10--
pounds,

or 20,000 pounds.
The work done against the weight of this mass of water in raising

it is

20,000 x 400 foot-pounds,

or 800,000,000 foot-pounds.

The work done in giving this mass of water the kinetic energy
with which it leaves the pump is

20,000 x 4 ,

2x32
fo

or 1,250 foot-pounds, if we take the acceleration due to gravity to be

32 ft.-per-sec. per second.

The total work done per minute on the water is, therefore

8,001,250 foot-pounds, and the power expended is

8,001,250 .

horse-power,

or, 242*462 horse-power.

In C.G.S. units power is usually measured in ergs per second.

In electrical measurements a unit of power called the watt is

generally used, and is defined as one joule per second, or

10 7
ergs per second. A multiple of this unit, known as the

kilowatt and equal to 1,000 watts, is also used. The French

Force de cheval, the equivalent of the English horse-power, is

equal to 75 kilogramme-metres per second, or about 736 watts.

A horse-power is equal to 746 watts.

10
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We have, therefore, the following units of power or activity

in the English and C.G.S. systems of units.

1 Horse-power == 33,000 foot-pounds per minute == 550

foot-pounds per second.

1 Watt = 1 joule per second = 1
7
ergs per second.

1 Kilowatt = 1,000 watts.

1 Force de cheval = 75 kilogramme-metres per second = 736

watts.

The relation between any of these units may be determined

by taking

1 Horse-power =746 watts = *746 kilowatt.

That is, three kilowatts is very nearly equal to four horse-power,

or a horse-power is approximately equal to three-quarters of

a kilowatt.

57. Relation between Energy and Force. If a force F
act on any body, or system of bodies, arid effects a very small

displacement 8 in the direction in which it acts, the energy

gained by the body, or system of bodies, is equal to the work

done by the force and is measured by F. Hence, if e denote

the energy gained by the body, or system of bodies, we have

F = i

That is, the force acting on the body or system of bodies in

any direction is measured by the rate at which the energy of

the body, or system of bodies, changes per unit length for a small

displacement in that direction.

A simple case of the application of this principle is given in

Art. 51. Here a body moving under the action of a constant
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force F, gains kinetic energy, and the kinetic energy gained in

moving over a distance s
* from rest is measured by Fs.

Hence, if E denote the energy thus gained, we have

E = Fs

F = -.
s

That is, the force F is measured by the rate at which the body

gains energy per unit distance along the line of displacement.

Since force can be measured in this way it has been called

the distance-rate or space-rate of change of energy.

58. Work Done by a Variable Force.. It has been

shown in Art. 51 that the work done by a constant force F
in acting through a distance s in the direction in which the

force acts is measured by Fs. That is, we have

W - F*.

If the force is not constant but variable then the value of F

changes from point to point over the distance s, and the relation

W = Fs cannot be used. If, however, we imagine the whole

displacement s to be divided into a very large number, n
t
of

equal elements or steps, each denoted by 8, and if we assume

the force to vary from step to step, but to be constant over each

step, the total work done by the force in acting through the

distance s is given by

W - F
t
8 + F

2
S + F

3g . . . + FnS,

where F
15
F

2 ,
F

3, . . . Fn denote the magnitudes of the
'

force over the successive steps of the displacement.

We, therefore, have

* In this case the force is constant so that the displacement s through
which the force acts need not be assumed to be very small for the work

done by the force is measured by Fs whether s be large or small.
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and since 8 = we getn

w = CFi + ** + ** . . . + F.,)

If n is very great (infinitely great), 8 is so small that the

assumption made above is true and the result here obtained

gives the true value of the work done.

Now, when n is very great,
---^ - is

IV

evidently the average force, which acts over the distance s, and

if we denote it byF we have

W = Ws.

If the force varies from point to point over the distance s in

a manner which is known and can be expressed mathematically,

the work done by the force can be calculated by methods similar

in principle to that indicated above. This mathematical method

is, however, only possible in certain cases and generally requires

a knowledge of advanced mathematical methods.

The simplest general method of determining the work done

in a case of this kind is a graphical method similar to that

explained in Art. 29 for the determination of the space passed

over by a body moving with variable velocity. If the manner

in which the force varies over the distance s is known it can

be represented by a curve of which the abscissa at any point

represents the displacement effected in the direction in which

the force acts, and the ordinate represents the corresponding

value of the force.

Let CD in Fig. 59 represent a curve plotted in this way, so

that the ordinate at any point represents the magnitude of the

force when the displacement has the value represented by the

abscissa of the point. For example, AC represents the magni-

tude of the force when the displacement is represented by
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OA, and BD represents the magnitude of the force when the

displacement is represented by OB.

Consider the work done by the force in acting through any

very small element of displacement, such as that represented

by ab. If the force remained constant throughout the small

displacement at the value represented by ac, the work done

would be represented by the area of the rectangle dbce. For,

since ac represents the force, and ab the displacement considered,

the product of the force into the displacement must be repre-

sented* by the area of the rectangle contained by ac and ab.

Similarly, if the force had the value represented by Id throughout

A a I
D i s p lace, ment

Fig. 59.

the displacement the work done would be represented by the

area of the rectangle abdf.

Now the work done by the force in acting through the small

distance represented by ab must be less than that represented

by abdf and greater than that represented by alec, and the

difference between each of these two extreme values and the

work represented by the strip abdc can be made as small as

we please by making ab small enough. Hence, when ab is

infinitely small, the work done by the force in acting through
the infinitely small element of displacement represented by ab, is

*
Compare Art. 29.
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represented by the area of the strip abed which stands on ab as

its base, and is bounded along cd by the portion of the curve

intercepted between the ordinates ac and bd which form its

sides.

It follows from this that if we consider the force to act

through any finite displacement, such as that represented by

AB, the work done by the force must be represented by the

area ABDC which lies between the ordinates AC and BD,
and is bounded by the curve along CD. The displacement

represented by AB may be divided into a very large number

of small equal elements similar to that represented by ab, and if

AB be divided into a corresponding number of short equal

lengths, the work done by the force in acting through each

element of the displacement is represented by the area of the

strip similar to abec which stands on the short length which

represents the element. The total work done must, therefore,

be represented by the area ABDC which is made up of all the

strips which stand on the short lengths into which AB has been

divided.

It will be seen, as in Art. 29, that if AE denote the height

of a rectangle standing on AB, and having its area equal to the

area of ABDC, then AE is the mean or average of the ordinates

between A and B, and represents the average force denoted by
F above.

Example. It is found by experiment that the force required to

stretch a spiral spring is proportional to the elongation produced, and
that the force required to stretch it 1 cm. is equal to the weight of

200 grammes ; find the work done in stretching the spring so as (a) to

produce an elongation of 20 cms. ; (6) to increase the elongation from

20 cms. to 30 cms.

(a) Since the force applied in stretching the spring is proportional to

the extension produced, the force applied in producing an elongation
of 20 cms. increases from its initial zero value to a final value of

20 x 200 gramme -
weights or 4,000 gramme -weights, and as it

increases uniformly with the elongation, the average force exerted
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in producing the elongation is given in gramme-weights by

f = +<**>, 2,000.

That is, the average force is 2,000 gramme-weights, or (2,000 x 981)

dynes.
The work done in producing the elongation is given by

W = Fs,

where s is the elongation or the distance through which the force acts.

W is therefore given in ergs by

W = 2,000 x 981 x 20,

or W = 39,240,000.

That is, the work done in producing an elongation of 20 cms. is

39,240,000 ergs, or 3 '924 joules.

(6) Similarly, the force applied in increasing the elongation of the

spring from 20 cms. to 30 cms. increases uniformly with the elonga-
tion from an initial value of 4,000 gramme-weights to a final value

of (30 x 200), or 6,000 gramme-weights, and the average value of the

force exerted is given in gramme-weights by

g = 4.000 + 6.000 = 6>500

That is, the average value of the force is 5,000 gramme-weights, or

(5.000 x 981) dynes.
The work done in increasing the elongation is given by

W is, therefore, given in ergs by

W = 5,000 x 981 x 10,

or W = 49,050,000.

That is, the work done in increasing the elongation from 20 cms. to

30 cms. is 49,050,000 ergs, or 4-905 joules.

This example may also be worked by the graphical method explained

above. The reader will find it a useful exercise to work it out for

himself.

59. Kinetic Energy Of Rotation. The kinetic energy of a

particle of mass m moving with a velocity v is J mv
2

. The

kinetic energy of a body of mass m moving with motion of
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translation with velocity v is also measured by J mv
2

,
for every

particle in it is moving with the same velocity. The kinetic

energy of a body in rotation is not, however, given by this

relation, for the linear"velocity of motion is not the same for

every particle in it. When a rigid body rotates round an axis

with angular velocity w, the velocity of any particle in the body
at a distance r from the axis is TLJ. If the mass of the particle

is denoted by m, the kinetic energy of the particle is \ m(rw)
z
,
or

J mrztD
2

9
and the total kinetic energy of the rotating body is the

sum of the kinetic energy of all its particles. Hence, if m
1} m.

2 ,

ms ,
w

4 ,
. . . denote the masses of the particles which

make up the body, and rb r
2 ,

r
s ,

r4 ,
. . . denote respectively

the distances of these particles from the axis of rotation, the

total kinetic energy of the body is given by

"o i 22 i 1 2 2 i
1 ft.

o 2 i

The expression here given in square brackets is seen to be the

moment of inertia of the body round the axis of rotation, as

explained in Art. 45, so that if I denote this moment of

inertia, we have

El T O= \ l<i^.

A body moving in a circle with angular velocity w, is in

rotation round an axis passing through the centre of the circle,

and at right angles to the plane of the circle. Hence, if I

denote the moment of inertia of the body round this axis, its

kinetic energy of rotation is given, as above, by
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CHAPTER XL

COMPOSITION AND RESOLUTION OP FORCES.

60. Force is a Vector Quantity. A force possesses magni-

tude and direction, and is, therefore, a vector quantity. Forces

may, therefore, be compounded and resolved by the rules which

apply to the composition and resolution of vector quantities.

In order to specify a. force completely it is necessary to specify

not only its magnitude and direction, but also its point of

application. For example, it is not a sufficient specification to

state that a force is 100 dynes in magnitude, and acts vertically

downwards
;

the particular point at which it is applied to

the body on which it acts, must also be specified. A force

may in general be supposed to act at any point in its line of

action, but in certain cases it is necessary to specify the exact

point at which it acts.

61. Composition of Forces Acting at a Point. If two

forces act at a point in the same direction along the same straight

line, their resultant is obviously equal to their sum. If they

act in opposite directions along the same straight line, their

resultant is equal to their difference, and acts in the same

direction as the greater force.

Hence, if any number of forces act at a point along the same

straight line, their resultant is equal to the difference between

the sum of those acting in one direction along the line and the

sum of those acting in the opposite direction, and acts in the

direction of the greater sum.

If forces acting in one direction along the line are considered
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positive, and those acting in the opposite direction negative, the

resultant of any number of forces acting along the line is the

algebraic sum of the forces.

If two forces act atf a point in directions inclined to each

other, their resultant may be at once obtained by means of the

parallelogram or triangle rule for the composition of vector

quantities.

Thus, if two forces of magnitude P and Q act at a point O
(Fig. 60), and if lines AB and AC are drawn from a point A to

represent these forces in magnitude and direction, the resultant

of the two forces is represented in the same way by the diagonal

AD of the parallelogram ABCD, constructed on AB and AC as.

adjacent sides. Or, if we apply the triangle rule, and draw in

order from the point A two lines, AB and BD, to represent the

forces P and Q in magnitude and direction, the resultant of the

two forces will be represented by the line AD, drawn from the

starting point A to the finishing point D.

The magnitude of the resultant can be determined graphic-

ally, or calculated from the geometry of the representative

parallelogram or triangle as explained in Art. 9. Thus, it can

be shown from the geometry of the parallelogram ABDC in

Fig. 60 that

AD2 = AB2 + BC 2 + 2 AB . BC cos BAC.

That is, if the magnitude of the resultant force represented
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by AD is denoted by R, we have

R'2 - PS 4. Q2 + 2 PQ cos a,

here a denotes the angle between the directions of the two

forces of magnitude P and Q.

In the particular case where the angle between the direction

of the two forces is a right angle (a
= 90), we have the

simpler relation

R- - P2 + Q2
.

This relation may be obtained directly from the figure by

applying Euc. i., 47, or deduced from the general relation given

.above, for, when a = 90 cos a = 0, and the term 2 PQ cos a

disappears from the general relation.

The application of the parallelogram rule to the composition of

two forces acting at a point, gives rise to the theorem generally

known as the parallelogram of forces. This theorem may be

stated generally in the following terms.

If two forces acting at a point are represented in magnitude
and direction by two straight lines drawn from any point,

and a parallelogram be constructed with these two lines as

adjacent sides, the resultant of the two forces will be represented

by the diagonal of the parallelogram drawn from the point from

which the lines representing the forces are drawn.

The truth of this theorem may be verified experimentally by
the following experiment.

Experiment 5. Take any three masses, P, Q, and R, of which

P and Q together are greater than R. Attach a length of fine pulley
cord to each mass and tie the ends of the three cords in a knot. The
cord attached to R should be shorter than those attached to P and Q,
which should be fairly long. Set up two good pulleys with their

wheels in the same plane, pass the cords carrying the masses P and

Q over these pulleys, and let the three connected masses P, Q, R,
set in equilibrium in the position shown in Fig. 61, with the knot

connecting the three cords at A.
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The three forces now acting at the point A are (1) the tension in

the cord AL equal to the weight of the mass P ; (2) the tension in

the cord AM equal to the weight of the mass Q ; and (3) the tension

in the cord AR equal to the weight of the mass R.

Since these forces Exactly balance each other in equilibrium, the

weight of the mass R must be equal and opposite to the resultant of

the weights of the masses P and Q. That is, the resultant of the weight
of P acting along AL, and the weight of Q acting along AM, is equal
to the weight of R, and acts vertically upwards. Hence, if the

weights of the masses P, Q, and R, be denoted by P, Q, and

./? respectively, the experiment shows that the resultant of a force of

P units acting at A along AL, and a force of Q units acting at

A along AM, is a force of A* units acting vertically upwards at A.

R

Pig. 61.

Now, bring a sheet of paper pinned on a drawing board close up to

the plane in which the cords AL, AM, and AR hang, and fix it in

this position. Mark the position of the point A on the paper, and

draw lines AL, AM, and AR, marking the directions of the cords

AL, AM, and AR. Along the line AL mark off a length AB,
P units in length to represent the force P in magnitude and direction,

and along the line AM mark off a length AC, Q units in length to

represent the force Q in magnitude and direction ; then complete the

parallelogram ABCD, and draw the diagonal AD.
The diagonal AD represents, in accordance with the parallelogram

of forces, the resultant of the two forces P and Q acting along AL
and AM respectively.

If the resultant thus represented is the same as that obtained by
the experiment, the direction of AD on the paper should be vertical
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in a line with AR, and it should be R units in length on the same

scale as that on which AB represents the force P and AC the force Q.

It will be found that this is the case.

The parallelogram rule for the composition of forces is thus shown

to give results in agreement with experiment.

When any number of forces act at a point in different

directions, their resultant may be found by the continued

application of the parallelogram rule, or by the polygon rule for

the composition of vector quantities.

Thus, if forces of magnitude P, Q, E, S and T act at a point

0, Fig. 62, and lines AB, BC, CD, DE, and EF be drawn

in order from a point A to represent these forces, the line AF
drawn from the starting point A to the finishing point F,

represents the resultant of these forces in magnitude and

direction.

It should be noticed in applying the polygon rule for the

composition of a number of forces acting at a point (a) that the

forces may be taken in any order
;
and (b) that the forces may

act in any direction from the point, and need not all be in one

plane.

If the forces are not all in the same plane the "
polygon

"
will

not be a plane figure but an irregular figure with sides in
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different planes, but if the forces all lie in the same plane, it

will be a plane polygon.

In either case the form of the figure for a given system of

forces will depend upoja the order in which the forces are taken

for representation, but the closing line representing the resultant

will be the same in length and direction whatever the order

may be.

62. Properties of the Resultant of a System of Forces.

The resultant of a system of forces should be equivalent

to the system in respect of every effect which a force can

produce.

The resultant of a system of forces acting on a body of given

mass should produce the same acceleration as the system itself.

It will be seen that the connection between the parallelogram of

forces and the parallelogram of accelerations depends upon this

property of the resultant.

If a body acted on by a system of forces is held in equilibrium

by the action on it of another force which exactly balances the

system, the equilibrium should not be disturbed by substituting

the resultant of the system of forces for the system itself. That

is, the resultant of a system of forces should be equal in magni-

tude to the equilibrant of the system, and the two forces should

act at the same point in opposite directions along the same line.

In experimental work the resultant of a system of forces is

usually found as in Exp. 5, by finding the equilibrant of the

system and then reversing it.

The moment of the resultant of a system of forces round any

point should be equal to the resultant or equivalent moment of

the system round the same point. If the forces of the system

are all in the same plane
* or co-planar forces, the moment of the

* This is the only case that can be considered in elementary work. The

composition of moments of force in different planes about a given point

presents difficulties which cannot here be considered.
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resultant of the system round any point in the plane is the

algebraic sum of the moments of the individual forces of

the system round the same point.

63. Composition of Parallel Forces. Forces whose lines

of action are parallel are called parallel forces. When two

parallel forces act in the same direction they are said to be like

forces, and when they act in opposite directions they are said to

be unlike forces.

The resultant of two like parallel forces must evidently be

equal to their sum, and must act in the same direction as the

forces. The position of its line of action is determined by the

fact that the moment of the resultant round any point is equal

to the algebraic sum of the moments of the
A f n

forces about the same point.

Hence, if a point be supposed to be

on the line of action of the resultant, the

moment of the resultant round this point

will be zero, and the algebraic sum of the

moments of the forces round the point will

also be zero. That is, the moments of the

forces round the point O must be equal in

magnitude and opposite in direction. The

point must, therefore, be between the two

forces, and the position of the line of action

of the resultant which passes through this point can be deter-

mined from the relation just stated.

Thus, let two like parallel forces of magnitude P and Q act

along the parallel lines AB and CD, as shown in Fig. 63. The
resultant of these two forces is of magnitude E, equal to

(P + Q), and acts in the same direction as the forces. Its line

of action, EF, lies between the lines AB and CD, and if be a

point on this line of action, the moment of P round will be

equal and opposite to the moment of Q round 0. Hence, if

LM be drawn through O at right angles to the direction of the

M

'(Q)

Fig. 63.
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forces, and cutting the lines AB and CD at L and M respectively,

we have

P . OL = Q . OM,
OM P

OL=Q'

That is, the line LM is divided at into two segments, OL and

OM, which are inversely proportional to the forces P and Q, to

which these segments are adjacent. This fixes the position of

the line of action of the resultant, for is supposed to be a

point on that line.

It follows, therefore, that the resultant of the two-like

parallel forces of magnitude P and Q is of magnitude (P -j- Q),

and acts in the same direction as the forces along a line which

lies between the lines of action of the forces, and divides the

perpendicular distance between them into two segments, which

are universely proportional to the adjacent forces.

Since the line LM, in Fig. 63, is divided at the point

where the line of action of the resultant cuts it into segments

which are inversely proportional to the adjacent forces, it follows

that any transverse line RTS, Fig. 63, cutting AB and CD,
the lines of action of the forces P and Q, at R and S

respectively, is divided at the point T, where the line of action

of the resultant cuts it, into two segments TR and TS, which

are inversely proportional to the adjacent forces of magnitude
P and Q.

Hence, if two like parallel forces P and Q act at the points

A andB, Fig. 64, the line of action of their resultant cuts the

line AB at the point C such that

CB _P
CA

~
Q'

Further, if we suppose the forces P and Q acting at A and B to

change direction in any way, but always remaining like parallel

forces, the line- of action of the resultant will always divide AB
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at C in the ratio P : Q, and will, therefore, always pass through

the same point C. That is, the resultant of two forces of

magnitude P and Q, acting at the points A and B, will pass

through the point C for all directions of the forces. The

resultant of the two forces acting at the points A and B may,

therefore, be supposed to act at the point C.

The resultant of two unlike parallel forces is equal to their

difference, and acts in the direction of the greater of the two

forces.

Also, if be a point on the line of action of the resultant,

the moment of the forces round this point must be equal in

I

(Q)

(P) (Q)

Fig. 64.

B C

Fig. 65.

magnitude and opposite in direction, and the point must, there-

fore, have the lines of action of both forces on the same side of

it, and be nearer to the greater than to the smaller force.

That is, the line of action of the resultant must lie outside the

lines of action of the forces on the side of the greater force.

Thus, let two unlike parallel forces of magnitude P and Q act

along the parallel line AB and CD, as shown in Fig. 65. The

resultant of these two forces is of magnitude R, is equal to

(P Q) if we assume P to be the greater, and acts in the same

direction as P, the greater of the two forces. Its line of action,

EF, lies outside the lines of action of the forces on the same side

11
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as the greater force P, and if be a point on the line of action,

we have, as in the case of like forces,

P . OL = Q . OM.
OM _ P
OL

-
Q

That is, the line LM is divided externally at into two segments
which are inversely proportional to the forces to which they are

adjacent.

Hence, if two unlike parallel forces P and Q act at the

points A and B, Fig. 66, the line of action of the resultant cuts

5.

(P)

Fig. 66.

ff+Q+R+S)

Fig. 67.

the line AB externally at a point C, such that

CB_P
CA

~~
Q

As explained above the resultant may be supposed to act at

the point C, so that the resultant of the two unlike parallel

forces P and Q acting at the point A and B, is a force of

magnitude (P Q) acting at the point C in the direction of the

greater force.

It should be noticed that in Fig. 64 for like forces, and in

Fig. 66 for unlike forces, the point C is so placed on the line
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AY), or AB produced, that the distances from it of the points

A and B, at which the forces P and Q act, are inversely pro-

portional to these forces. It may be noticed, too, that in both

figures, and in all similar figures, the greatest of the three

forces P, Q, and R is in the middle position.

The resultant of any number of like parallel forces acting at

given points, may be found by finding first the resultant of any

two forces, then the resultant of the resultant so obtained and a

third force, and so on until the final resultant of the complete

system is obtained.

Thus, if four like parallel forces of magnitude P, Q, R, and S

act at points A, B, C, and D, as shown in Fig. 67, the resultant

of P and Q is a force of magnitude (P + Q) acting at the point

E, which divides AB inversely in the ratio P : Q. The resultant

of this force (P + Q) acting at E, and the force R acting at C,

is a force of magnitude (P -h Q + R) acting at the point F

which divides EC inversely in the ratio (P -f Q) : R. Then the

resultant of this force (P -f Q + R) acting at F, and the force

S acting at D is the force (P + Q + R -h S) acting at the point

G, which divides FD inversely in the ratio (P + Q + R) : S.

This final resultant acting at the point G is the resultant of

the system of four like parallel forces of magnitudes P, Q, R,

and S, acting at the points A, B, C, and D.

The point G is the point through which the resultant of the

system would pass for all directions of the system, and is called

the centre of the system. The centre of a system of parallel

forces is thus a point whose position depends only on the

magnitudes of the forces and the position of the points at which

they act, and is quite independent of the direction of the system.

The resultant of any system of parallel forces may obviously

be found by finding first the resultant of all the forces acting in

one direction, then the resultant of all the forces acting in

opposite direction, and finally the resultant of the two unlike

forces thus obtained.
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If, however, the forces are all in the same plane, the resultant

is most readily found by making use of the facts that the

magnitude of the resultant is the algebraic sum of the magni-
tudes of the forces of the system, and that the moment of the

resultant round any point is the algebraic sum of the moments

of the forces round the same point.

Most problems relating to parallel forces in one plane can be

solved by making use of these two facts.

Examples. 1. A light rod, AB, 40 cms. long, carries a mass of

100 grammes at each end, and a mass of 300 grammes at a point 10 cms.

from the end A ; find a point on the rod such that if the rod is

suspended by a string attached at this point it will hang in equili-

brium in a horizontal position. The weight of the rod may be

neglected.

The point required on the rod is the point at which the resultant

of the weights of the suspended masses acts, for if the rod is sus-

pended by a string attached at this point the resultant of the

weights and the tension on the string will act in the same vertical

line, and the rod will be in equilibrium in any position.

The magnitude of the resultant of the weight is (100 + 300 + 100)

gramme-weights, or 500 gramme-weights, and if the distance of the

point at which it acts from the end A of the rod be denoted by x, we

have, by taking moments round A when the rod is horizontal,

500* = 300 x 10 + 100 x 40 ;

or oOOx- = 7,000,

and x = 14.

That is, the resultant of the weights acts at a point on the rod 14 cms.

from the end A, and if the rod is suspended by a string attached at

this point it will hang in equilibrium in a horizontal position, or in

a position making any angle with the horizontal.

2. A rod 4 feet long is suspended in a horizontal position by two
vertical strings attached at the ends of the rod, and masses of 3 Ibs.

,

4 Ibs., and 5 Ibs. are suspended from the rod at distances of 1 ft.,

2 ft., and 3 ft. from one end. Find the tension in each of the

strings by which the rod is suspended, the weight of the rod itself

being neglected.

Let the arrangement of the rod and the masses suspended from it

be as shown in Fig. 68, and let Tl and T2 denote, in pound-weights,
the tensions in the strings at the ends A and B of the rod AB.
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Since the rod is in equilibrium the algebraic sum of the moments of

the forces round any point in their plane must be zero.

Hence, if we take moments round A we must have

and

4 To - 3 x 1 - 4 x 2 + 5 x 3 = 0,

4 T
3
= 3 + 8+ 15 = 26,

T = 6i.

That is, the tension in the string supporting the rod at the end B is

5J pound- weights. Similarly, if we take moments round B, we get

That is, the tension in the string supporting the end B of the rod is

.H pound-weights.
It should be noticed that by taking moments round the point A the

5 /6s.

unknown force, T1} acting at that point, is eliminated from the

equation obtained. Similarly, by taking moments round the point

B we eliminate To. If moments are taken round any other point the

equation of moments must contain 1\ and T2 , and a second equation

derived from the fact that the resultant of the system is of zero

magnitude must be used to obtain the values of T
1
and T2 .

This second equation, Tj + T, - 3 - 4 - 5 = 0, or Tx + T2
= 12,

may be used in the solution given above after finding the value of

To. For if we substitute the value 6J obtained for T.2 in this equation,

we get
T! + 6.i

= 12,

or T! =5$.

64. A Couple. When two unlike parallel forces are equal

in magnitude they have no real resultant, and are said to form

a couple. The effect of the action of a couple on any body
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is to produce rotation, and the proper measure of a couple is

its moment.

The moment of a couple round any point is the algebraic sum

of the moments of th two forces which constitute the couple

round the same point, and it can be shown that it has the same

value for every point in the plane of the couple. Thus, let the

two unlike parallel forces of equal magnitude P constitute a

couple, and consider the moment of the couple round any point

O, Fig. 69, in the plane of the couple. When the point is

taken anywhere between the lines of action of the two forces

of the couple the moment of the couple is given by

(P . OA + P . OB) = P(OA -f OB) - P . AB.

Similarly, when the point is taken anywhere external to the

lines of action of the forces, the moment of the couple is

given by

(P . OB - P . OA) = P(OB - OA) - P . AB.

That is, the moment of the couple

round any point in its plane is given by

) (P . AB), where AB is the perpendicular

distance between the lines of action of the

forces of the couple. The moment of the

couple round any point in its plane is,

therefore, of constant value, for the dis-

tance AB is obviously constant. This

distance is called the arm of the couple,

and the moment of a couple is measured by the product of the

magnitude of either force of the couple into the arm of the

couple.

It will be seen that two couples of equal moment in the same

plane must balance each other if their moments are of opposite

sign, for, \vherever they act in the plane the algebraic sum of

their moments round any point in the plane must be zero.

Fig. 09.
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It should be noted that whenever a body moves with motion

of rotation only it is subject to the action of a couple. In

many cases, however, only one force is applied directly, the

second force of the couple being supplied by the reaction at

the axis of rotation. For example, when a door or gate hung
on hinges is pushed open it rotates on its hinges round a vertical

axis. If a force is applied 'to the door in a horizontal plane at

right angles to the plane of the door the resultant reaction at

the hinges is equal and opposite to it and acts at a point on the

axis of rotation in the same horizontal plane as the applied

force. The applied force and the reaction at the axis of

rotation thus constitute the couple which causes the rotation

of the door on its hinges.

65. Composition of a System of Co-planar Forces.

A system of forces whose lines of action all lie in the same plane

is called a system of co-planar forces. The forces of the system

are generally supposed to act on the same rigid body at different

points in the plane.

A system of this kind, if not in equilibrium, can evidently

be reduced by compounding the component forces, to a single

resultant force or to a couple. For, if the forces are more than

two in number it is always possible to compound two of them

into a single resultant force, and so reduce the number of forces

by one. When the forces are reduced in this way to two in

number these two forces must either be capable of being

compounded into a single resultant force, or they must be

equal in magnitude and act in opposite directions along the

same straight line, and so be in equilibrium, or along parallel

straight lines, and so form a couple.

66. Resolution Of Forces. A force being a vector

quantity may be resolved into two components either by the

parallelogram rule or the triangle rule. Thus, if the line AC
in Fig. 70 represent a force in magnitude and direction, and

if we construct on AC as diagonal any parallelogram such as
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ABCD, then the two adjacent sides AB and AD represent

the two component forces into which the force represented by

AC is in this way resolved. Similarly, if we construct on

AC any triangle, such as ABC, then the two sides AB and

BC represent the two component forces into which the force

represented by AC is thereby resolved.

In the same way by applying the polygon of forces any

given force may be resolved into any number of co-planar

components acting at the same point. Thus, if AF, in Fig. 71,

represent the given force in magnitude and direction,- then, by

constructing on AF any polygon, such as ABCDEF, the given

force is resolved into five components represented in magnitude

Fig. 70. Fig. 71.

and direction by the lines AB, BC, CD, DE, and EF. That is,

if the five forces represented by these lines act at a point,

they will have the given force represented by AF as their

resultant.

The most important case of resolution of a force is that in

which the force is resolved into two components at right angles.

The usual method of resolving a vector quantity into two

components at right angles has already been dealt with in

Art. 9.

It will be seen that if a force of magnitude F, acting along

OA, as shown in Fig. 72, be resolved along any line OX,

making an angle with OA, and along OY at right angles to
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OX, the two components are F cos along OX, and F sin

along OY.

This result may be expressed in other terms, but it will be

found that the form here adopted is, in the end, the simplest

and the most generally useful.

The resultant of a number of co-planar forces acting at a

point can sometimes be found most conveniently by resolving

each force into two components along any two directions taken

at right angles to each other through the point, and then finding

the resultant of the algebraic sums of the components along the

two directions of resolution. Thus, if the forces acting at the

point O, in Fig. 73, be resolved individually along the two

Fsin 9

Fcos 6

Fig. 72.

X'

Y

Fig. 73.

rectangular axes X'OX and Y'OY, and if X denote the algebraic

sum of the components along X'OX, and Y denote the algebraic

sum of the components along Y'OY, then K, the resultant of

the system of forces acting at 0, is given by

K2 = Y2
.

Example. Five forces, P, Q, R, S, T, of magnitude 15 units,

(I units, 10 units, 12 units, and 20 units respectively, act at a point in

a vertical plane. The force P acts horizontally to the right, and the

lines of action of the other forces, taken in the order given, make

angles of 30, 90, 120, and 225 (measured counter-clockwise) with

the line of action of this force. Find the resultant of the system.
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Let the forces of the system act at the point as represented in

Fig. 74.

llesolve the forces along two directions, X'OX and Y'OY, taken

through at right angles to each other, and coinciding with the

directions of the forces P and R. The forces P and R already act

along these directions, and need not, therefore, be resolved.

Tcos45 Scos60 ,0

(T)

(P)

q cos 30

Fig. 74.

The components obtained b}' resolving the other forces along these

two directions are given below.
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R, the resultant of the system, is given, therefore, by

W = (3-52)
2 + (9'25)

3

,

or, R = 9'9 nearly.

i That is, the resultant is a force of nearly 9 '9 units acting at O
in a direction which makes with OX an angle whose tangent is

;V-o>
or 2*63. The magnitude of this angle is about 67 40'.

The resultant of the given system of forces is thus completely

determined in magnitude and direction.
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CHAPTER XII.

CENTRE OF GRAVITY.

67. Centre Of Gravity. If a force is applied to a block of

stone by means of a rope attached to the block at a particular

point, the force can be said to be applied to the block at the

point of attachment of the rope.

The force of attraction exerted by the earth on any body
near it cannot, however, be said to be applied to the body at

any particular point. The weight of each particle of the body
acts on the particle at the point where it is situated in the

body, and the weight of the body as a whole is really a system

of parallel forces, infinite in number, made up of the weights

of all the particles which make up the body, acting at the points

where these particles are situated.

If a body held in any position is rotated through any angle

into another position the direction of the system of parallel

forces which constitutes the weight of the body does not change

relative to the earth, for it is always vertical, but it does change

relative to a fired line in the body. If the body, for example, is

rotated through any angle in a vertical plane, the direction of

the system in the body relative to a fixed line in the body

changes through the same angle. That is, as the position of

the body is changed, the forces of the system remain of the

same magnitude and act at the same points in the body, but

the direction of the system relative to any fixed line in the

body, in general, changes. It follows, therefore, as explained in

Art. 63, that the resultant of the system passes, for all positions
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of the body, through a point which is fixed in position relative

to the body. If the system is considered relative to the body

only, this point is the centre of the system, as defined in Art. 63,

and is called the centre of gravity of the body.

The centre of gravity of a body may, therefore, be defined as

the point through which the resultant of the weights of the

particles which make up the body passes for all positions of the

body. The weight of the body may thus be considered as a

single resultant force, acting at the centre of gravity of the body.

It will be understood that the centre of gravity of a body

is not necessarily in the body itself; it may be at a point

outside the material of the body, but the position of the

point is fixed relative to the body and must be specified in

this relation. For example, the

centre of gravity of a length of

wire bent in the form of a circular

ring is at the centre of the ring.

When we speak of the centre

of gravity of a body as a definite ^)V
--

fixed point in the configuration of

the body it is understood that the body is rigid. If the body is

made up of movable parts the centre of gravity is fixed for any

given configuration of the body, but changes its position with

change of configuration. For example, the position of the

centre of gravity of a bicycle depends upon the arrangement of

its parts, but for any given arrangement it is a definite fixed

point.

68. Method of Finding- the Position of the Centre

Of Gravity Of a Body. The method of finding theoretically

the centre of gravity of a body is based on the result given

in Art. 63. Thus, if two particles of weights w
1
and w

2
are

placed at points A and B, Fig. 75, their centre of gravity is

on the line AB at the point D which divides the line into

two segments AD and DB is the ratio o> 9 : wr Similarly,
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the centre of gravity of three particles of weights w
1 ,

w.
2 ,
and

oj3
at the points A, B, and C is on the line CD at the point E

which divides the line into two segments DE and EC in the

ratio (a)L + tu
2)

: &>...

Any body may be supposed to be made up of its constituent

particles, and as we can, by the method here indicated, find the

centre of gravity of any system of particles, we can, in theory,

find the centre of gravity of any body.

In simple cases where the body is of regular form, and its

particles are arranged symmetrically about any point or line in

the body the application of the method is comparatively easy.

Thus, the centre of gravity of a straight uniform filament,

such as a straight piece of very fine uniform wire, is evidently at

B D

Fig. 77.

its middle point. The filament may be considered as a row of

particles of equal weight distributed uniformly along a straight

line, and by pairing particles equidistant from the centre it can

be seen that the centre of gravity of every pair, and, therefore,

the centre of gravity of the filament, as a whole, is at the

middle point.

From this result the centre of gravity of any regular plane

lamina, or thin sheet of matter uniformly distributed over any

regular plane area, can readily be found. Thus, the rectangular

lamina ABCD in Fig. 76 may be supposed to be made up,

as indicated in the figure, of an infinite number of straight

filaments or linear elements arranged parallel to the sides AB
and CD. The centre of gravity of each of these elements is
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at its middle point, so that the centres of gravity of all the

elements which make up the lamina lie along the median line EF

which joins the mid points, E and F, of the lines AB and CD.

It follows from this that the centre of gravity of the lamina

must be somewhere on this median line.

In the same way, by dividing the lamina into linear elements

parallel to the sides AD and BC, it can be shown that the

centre of gravity must lie on the median line HK. Hence,

if the centre of gravity of the lamina lies on the line EF and

also on the line HK, it must be at the point G where these

two lines intersect.

In this case it might have been stated at once, after showing

that the centre of gravity of the lamina lies on the median line

EF, that it lies at the middle point of the line. The linear

elements into which the lamina is divided parallel to AB and

CD are equal, and their weights acting at their centres of

gravity on the median line EF are uniformly distributed along

this line. It follows, therefore, that the centre of gravity of

the lamina made up of these elements must be at the middle of

the line.

It will be seen from what has been said above that the centre

of gravity of a lamina in the form of a square, a rectangle, or

a parallelogram, is at the intersection of the median lines of the.

figure. It is easily shown geometrically that this point is also

the intersection of the diagonals of the figure.

In the same way it can be shown that the centre of gravity of

a lamina in the form of any regular plane figure, is at the

intersection of any two median lines of the figure. Thus, the

centre of gravity of a circular lamina is at its centre, an

the centre of gravity of a lamina in the form of any regular

polygon is at the centre of the circle circumscribing the polygon.

In the case of a triangular lamina ABC, Fig. 77, it can be

shown by dividing the lamina into linear elements parallel to

any one of the sides, that the centre of gravity must lie on the
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median line joining the middle point of that side to the opposite

angular point, and must, therefore, be at G, the point of inter-

section of any two of the three median lines AD, BE, and CF.

It is easily proved geometrically that this point is so placed on

each of the median lines that its distance from the mid-point of

the side to which the line is drawn is one-third the length of

the line. That is, DG = -J DA, EG = J EB, and FG =
-J-
FC.

Just as a lamina may be divided for the purpose of finding its

centre of gravity into linear elements, and a linear element into

particles, so a solid body may be divided into infinitely thin

laminar elements or slices.

If the laminar elements into which a solid can be divided are

of any regular form for which the centre of gravity is known,

and if they are arranged in a regular and definite manner, the

centre of gravity of the solid can, in general, be found by an

extension of the method indicated above.

A cylinder, for example, may be divided into an infinite

number of circular laminae or slices at right angles to the axis ;

the centre of gravity of each lamina is at its centre, on the axis

of the cylinder, and as the lamina are distributed uniformly

along the axis, the centre of gravity of the cylinder must be at

the middle point of its axis. Each lamina may be supposed to

be replaced by a particle of the same weight placed at the centre

of gravity of the lamina on the axis of the cylinder. The

cylinder as a whole thus becomes equivalent to a line of

equiil particles uniformly distributed along the axis, and its centre

of gravity must, therefore, be at the middle point of the axis.

Similarly, the centre of gravity of any prism whose cross

section is a regular polygon, is at the middle point of its axis,

and the centre of gravity of a triangular prism is at the middle

point of the line parallel to its edges, which passes through the

centres of gravity of the transverse triangular laminae, into

which the prism may be divided.

The centre of gravity of a sphere is obviously, from con-
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siderations of symmetry, at the centre of the sphere. It can

he seen, also, that if the sphere is divided into laminar

elements at right angles to any diameter, the centre of gravity

must lie on that diameter, and must, therefore, be at the point

where any two diameters intersect. This point is the centre of

the sphere.

The centre of gravity of a cone must evidently lie on the line

joining the apex of the cone to the centre of the base, for if the

cone be supposed divided into laminar elements parallel to its

base, the centre of gravity of each element lies on this line, and

the centre of gravity of the cone made up of these elements

must, therefore, be at a point on the line.

The elements are not, however, of equal weight, so that the

weight is not distributed uniformly along this line, and the

centre of gravity is, consequently, not at the middle point of

the line, but at a point nearer the base of the cone. The

exact position of the centre of gravity of the cone on this line

evidently depends upon the manner in which the weight is

distributed along this line. It can be seen without much

difficulty that the weight at any point on the line is pro-

portional to the square of the distance of the point from the

apex of the cone, and it can be shown from this that the centre

of gravity of the cone is at a point on the line whose distance

from the base of the cone is one-fourth the length of the line.

In the same way it is found that the centre of gravity of a

pyramid is on the line joining the apex of the pyramid to the

centre of gravity of the base at a point whose distance from the

base is one-fourth the length of the line.

It will be seen from the examples given above that the usual

method of finding the centre of gravity of a body is to divide

the body into suitable elements for each of which the position

of the centre of gravity is known. If the centres of gravity of

these elements all lie on a straight line, the centre of gravity of

the body must lie on that line, and if another similar straight

12
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line can be found, the centre of gravity must be at the point of

intersection of the two straight lines. The exact position of

this point can then be found by geometry.

If there is only orte way of dividing the body into elements

whose centres of gravity all lie on a straight line, the elements

may be supposed to be replaced by particles of the same weight

placed at their centres of gravity. The problem of finding the

centre of gravity of the body is thus reduced to finding the

centre of gravity of a line of particles of known weight arranged

along a straight line.

The most general method of finding the centre of gravity of

u number of particles whose weights and positions are known is

indicated below for particles in one plane.

oc2 B
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That is.

()
and

This result is readily obtained geometrically by working

out the co-ordinates of the centre of gravity of the particles

by applying the method of Art. 63. Thus, the co-ordi-

nate of the centre of gravity of the particles at A and B

obtained by this method will be found to be f^ 1
'
1
'

1 w* '/2 landix \ Wi 4- W2
/

/w i !/i __ty*\ an(j continued application of this result leads
b)! + 0>2 /

for any number of particles to the general result given above.

The result is, however, more easily obtained by supposing the

particles to be in a horizontal plane, so that their weights act at

right angles to the plane of the axes of co-ordinates, and then

taking moments about OX to find ~, and about OY to find y.

The moment of the resultant of the weights of the particles,

acting at their centre of gravity, about either axis, must be

equal to the algebraic sum of the moments of the weights of

the individual particles about the same axis. Hence, by taking

moments about OX we have

2 (tax)
or x

'

. as above.
2,(o>)

Similarly, by taking moments round OY we get

_ 2 (*)

2()
In these results the expressions 2 (wx) and 2 (wy) must be

taken to mean the algebraic sum of the quantities of the form we
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and wy for, unless the particles are all in one quadrant, as

in Fig. 78, the co-ordinates of the points at which the particles

are placed may be positive or negative.

If the particles are distributed along a straight line their centre <

of gravity is also on this line, and if the line be taken as the

axis of .> then we have

-f (t).> ,''., + Wo /., + . . . + w
10

\_
+ W.> 4- U>.

;

. . . + Wn

where .' r /.>, '

;>
. . . . / are the distances of the particles from any

point on the line, taken as origin, and x is the distance of the

centre of gravity from the same point.

The determination of the centre of gravity of a body by

dividing the body into infinitesimal elements, and then applying

the results given above, usually requires advanced mathematical

methods, and cannot be further considered. If. however, any

body can be divided into a few finite parts for which the positions

of the centres of gravity are known, the parts may be supposed

to be replaced by particles of the same weight at their centres of

gravity; and the centre of gravity of these particles that isr

the centre of gravity of the body can then be found by the

method of Art. 63, or by applying the results given above.

Examples. 1. Find the centre of gravity of a uniform lamina in

the form of an irregular quadrilateral. The lamina ABCD, shown

in Fig. 79, may be divided into two triangular lumimv, ABC and ADC.
Draw the diagonal AC and let O be its middle point. The centre of

gravity of the triangular lamina ABC will then be on the median

line BO at a point E, such that OE = J OB. Similarly, the centre of

gravity of the triangular lamina ADC is on the median line DO at

a point F, such that OF = J OD.

The triangular lamina? ABC and ADC may therefore be supposed to

be replaced by particles of the same weights, placed at the points E
and F respectively. The centre of gravity of these two particles will

be on the line EF at a point G which divides the line into two

segments, which are inversely proportional to the weights of the

adjacent particles. The weights of the particles at E and F are
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evidently proportional to the areas of the triangles ABC and ADC,
and the line EF must therefore be divided at G, so that

GE : GF :: Area of triangle : Area of triangle

ADC ABC.

This relation determines the position of the point G on the line EF,
and this point is the centre of gravity of the lamina.

Instead of finding the position of G on the line EF in the

manner given above, it would be possible, by dividing the lamina

ABCD into two triangular lamina- BAD and BCD, to find another

line, E'F', on which the centre of gravity must lie. The point
G would then be determined by the intersection of the two lines

EF and E'F'.

2. Find the centre of gravity of a uniform wire bent into the form

of a triangle.

A D a

Fig. 80.

The bent wire ABC, Fig. 80, may be divided into three straight

lengths AB, BC, and C-A, and the centres of gravity of these lengths
are at their mid-points D, E, and F.

The three lengths AB, BC, and CA may, therefore, be replaced

by particles of the same weights at the points D, E, and F. The

weights of the particles at D, E. and F are thus proportional to the

lengths of the sides AB, BC, and CA of the triangle ABC.
The centre of gravity of the two particles at D and E will, there-

fore, be on the line DE at a point H, which divides the line, so

that we have HD : HE :: BC : AB. The two particles at D and E
anay, therefore, be replaced by a single particle of their combined

weight at the point H, and it follows that the centre of gravity
of the three particles at D, E, and F, or the centre of gravity of the

bent wire, must lie on the line FH. Similarly, it can be seen

that the centre of gravity of the two particles at E and F is on
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the line EF at a point K, such that

EK : KF :: CA : BC,

and it follows that the centre of gravity of the bent wire must lie on

the line DK.
Since the centre of gravity of the wire is thus found to lie on the

line FH, and also on the line DK, it must be at the point G where

these two lines intersect.

By following up the geometry of the figure with the help of Euc.

vi. 3, it can be seen that the lines FH and DK bisect respectively

the angles EFD and FDE ; and that the point G, the centre of gravity
of the bent wire, is the centre of the circle inscribed in the triangle

DEF.
3. A body of given material is made in the form of three cylinders

arranged end to end with their axes in the same line. The cylinders

are of the same length, but their diameters in order are in the

ratio 1:2:3. Find the position of the centre of the gravity of the

body.
Since the cylinders are of the same length and material, and their

|

;
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the radius of the lamina. Find the centre of gravity of the portion of

the circular lamina which remains after the circular piece is cut out.

The centre of gravity of the lamina as a whole is at its centre G,

Fig. 82.

The centre of gravity of the piece cut out is at a point A whose

distance from G is one-fourth the radius of the lamina.

The centre of gravity of the remaining portion of the lamina must,

therefore, be at some point X on the line AG produced. This

is evident, for the centre of gravity of the whole lamina must lie on

the line joining the centres of gravity of the two parts here con-

sidered. That is, the points AG and X must lie in a straight line.

If the weight of the piece cut out be taken as 1 unit, the weight of

the whole lamina will be 4 units, and the weight of the portion

remaining will be 3 units.

Fig. 82.

Hence, if the distance GX be denoted by x and the radius df the

lamina by r, and we apply the relation,

or
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That is, the centre of gravity of the portion of the lamina which

remains after the piece is cut out, is on the line AG produced, at

a point X whose distance from G, the centre of the lamina, is

one-twelfth of the radius of the lamina.

Instead of applying the general relation, as above, it would be

simpler in this case simply to take moments about G. If the line

AGX s supposed to be horizontal the weights of the lamina and

the two parts considered act vertically at right angles to AGX,
and by taking moments round G, we get

5. Three bodies A, B, and C, whose weights are respectively

2 units, 3 units, and 4 units, are suspended by threads from the

ceiling of a room. The distances of the centres of gravity of these

bodies are respectively 2 feet, 4 feet, and 6 feet from one wall of

the room, 3 feet, 5 feet, and 7 feet" from an adjacent wall, and

3 feet, 6 feet, and 9 feet from the floor. Find the position of the

centre of gravity of the three bodies.

The bodies may here be considered as particles placed at their

respective centres of gravity.

It will be seen by an extension of the result given above for

particles in one plane that if x
lt

x.2 , xs denote the distances of the

bodies from the first wall, ylt y.2 , y3 their distances from the adjacent

wall, and z
lt

z.2 , z% their distances from the floor, we have

where x,l/, and z denote the distances of the centre of gravity of the

three bodies from the reference planes specified above.

Hence, by applying these results we get

- (2 x 2) + (3 x 4) + (4 x 6) 40

2 + 3-4
=

-9
=: 4 *'

- _ (2 x 3) + (3 x 5) + (4 x 7) _ 49 _ ^ 4

2+3 + 4 -"9"

r _ (2 x 3) + (3 x 6) + (4 x 9) _ 60 _
2+3+4 ~9~

That is, the centre of gravity of the three bodies is at a point
distant 4* feet from the first wall, 5* feet from the adjacent wall,

and 6 feet from the floor.
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69. Centre Of Mass. It has been explained in Art. 68

that if particles of weights wv w.2 ,
w

;3
. . . w,, lie in the

same plane at points whose co-ordinates with reference to

known axes are (#$,), (x2 . y.2 ), (xs . ys) . . .
(.<'H . yn ),

the

position of the centre of gravity of the particles is given by
the relations

_ <"I
A
'I
+ fty'g + fry's . . . + fay'tt

and

If the masses of these particles be denoted by mv in.,,

. . . wn their weights will be given by mtf, m.
2y,

g . . . mng, and the relations given above reduce to

_ _ m^ + mflz +

It will be seen that in making the necessary substitutions

the quantity g appears in both numerator and denominator of

these relations, and, therefore, cancels out in the final form

given above.

It follows from this result that the position of the point

whose co-ordinates are
(,c, ~y) t really depends upon the distribu-

tion of mass in the plane. That is, the position of the point

called the centre of gravity of the body really depends upon

the distribution of mass in the body, and is really the centre

of mass of the body.

The centre of mass of a body is most conveniently denned by

the method indicated in Example 5 in Art. 68. If the distance

of any particle in the body from three reference planes at right

angles to each other and having a common point at the origin



186 GENERAL PHYSICS.

be denoted by .r, ?/, and :, and if the mass of the particles be

denoted by m, then the point whose co-ordinates are

_ _=

is the centre of mass of the body.

It will be seen that if a body is subject to the action of

any force, such that the forces to which the individual particles

of the body are subject are all parallel in direction, and

proportional to the masses of the particles in magnitude, the

centre of this system of parallel forces, and the point at

which the force acting on the body may be supposed to act,

is the centre of mass of the body.

The attraction of the earth on any body is a force of this

kind, as explained in Art. 67, and it follows that the centre of

gravity of a body is at its centre of mass.

The centre of mass of a body has some important dynamical

properties. When a body is moving with pure motion of

translation its velocity, as explained in Art. 26, is the velocity

of any point in it
; but, if the body is moving in any way, its

velocity, in accordance with Newton's laws of motion, is the

velocity of its centre of mass. Similarly, the momentum of

a body moving in any way is given by the product of the mass

of the body into the velocity of its centre of mass.

It can be shown, too, that the kinetic energy of a body in

motion is the kinetic energy of the whole mass moving with the

velocity of the centre of mass, together with the sum of the

kinetic energies of its component particles relative to the centre

of mass.

70. Experimental Method of Finding the Centre of

Gravity Of a Body. If a body is suspended by a thread

attached to the body at any point, the body will hang when

at rest with its centre of gravity vertically below the point

of suspension. The forces acting on the suspended body are its
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weight acting vertically downwards at its centre of gravity G, as

shown in Fig. 83, and the tension in the suspension thread

acting vertically upwards at the point of suspension A. When
the body hangs at rest these two forces balance each other ;

they must therefore be equal in magnitude, and must act in

opposite directions along the same straight line. That is, the

vertical through G and the vertical through A are in the same

straight line, and the point G is therefore vertically below

the point A.

Hence, if a body is suspended by a thread attached at any

point A, the centre of gravity of the body lies on

the prolongation of the direction of the thread

through A. Similiarly, if the body is suspended

by a thread attached at another point B, the

centre of gravity lies on the prolongation of the

direction of the thread through B. The centre

of gravity will therefore be found at the inter-

section of the two directions thus determined

in the body.

In many cases it is practically impossible to

apply this method experimentally for the direc-

tions of the lines on which the centre of gravity

is known to lie cannot in general be marked,

and the point at which they intersect cannot be

determined. In the case of some bodies, how-

ever, of open structure, such as a bird cage or any open frame

work, it is generally possible to mark the prolongations of the

suspension thread by means of threads, and so to fix the position

of the centre of gravity at the point where these threads inter-

sect. In the case of thin plane sheets or lamina of any rigid

material, the centre of gravity is easily found by this method as-

explained below.

Experiment 6. Take a plane sheet of cardboard or tin-plate of any

irregular shape, and find the position of its centre of gravity by

Fig. 83.
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suspending it by a thread attached successively at two different

points, A and B, taken anywhere at the edge of the sheet. When the

sheet hangs at rest by a thread attached at the point A, mark the

prolongation of the direction of the thread on the face of the

suspended sheet by means of a plumb line through A. Similarly,

when the sheet hangs at rest by a thread attached at the point B,

mark the prolongation of thread in the same way on the face of

the sheet.

The point at which the two lines thus drawn on the face of the

sheet intersect is the centre of gravity of the sheet. Suspend the

sheet by attaching the thread at other points, and note that the

prolongation of the direction of the thread in every cape passes

through the same point.

From what has been said above, it will be understood that if

a body is balanced at rest on a point or pivot, the centre of

gravity lies on the vertical line passing through the point.

Similarly, if a body is balanced at rest on a knife-edge the

centre of gravity lies in the vertical plane through the

knife-edge.

Experiment 7. Find the centre of gravity of a rectangular block of

non-uniform material by balancing it on a knife-edge taken parallel

successively to the length, breadth, and thickness of the block.

Mark on the block in each case the position of the plane in which

the centre of gravity lies, and specify from the data thus obtained the

position of the centre of gravity as determined by the point at which

these three planes intersect.
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CHAPTER XIII.

i

EQUILIBRIUM OP FORCES.

71. Equilibrium. When the forces acting on a body balance

each other so that they cannot produce any change in the body's

state of rest or motion the forces are in equilibrium.

It follows from this that the magnitude of the resultant of a

system of forces in equilibrium must be zero, and that the

algebraic sum of the moments of the forces about any and

every point must be zero.

If the resultant is zero there can be no change in the motion

of translation, and if the algebraic sum of the moments is zero,

there can be no change in the motion of rotation.

It is evident from what has been said that a body acted

on by a system of forces in equilibrium must either be at rest or

in uniform motion in a straight line.

A body acted on by a system of forces in equilibrium is

sometimes said to be in equilibrium.

72. Stable, Unstable, and Neutral Equilibrium. A
body at rest* under the action of several forces which balance

each other is said to be in equilibrium. If a body in equilibrium

receives a small displacement, and the forces acting on it tend to

restore it to its original position, it is said to be in stable

equilibrium.

If, however, when the body receives a small displacement, the

forces acting on the body tend to increase the displacement, and

* Or in uniform motion in a straight line.
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so to displace the body further from its original position,

the body is said to be in unstable equilibrium.

In some cases when the body is displaced the forces acting

on it tend neither to restore the body to its original position nor

to displace it further from this position ;
that is, the equilibrium

of the body is not disturbed by the displacement. In any such

case the body is said to be in neutral equilibrium.

Thus, a cone resting on a plane horizontal surface, under the

action of its weight and the resistance of the plane, is in stable

equilibrium if it rests on its base, in unstable equilibrium if it is

balanced on its apex, and in neutral equilibrium if it rests on its

side.

The equilibrium of heavy bodies is more fully considered

in Arts. 79 and 80.

73. Equilibrium of Two Forces acting- at a Point.

If two forces act at a point the obvious condition of equili-

brium is that the forces must be equal in magnitude, and must

act in opposite directions.

It follows from this that two forces, acting at different points,

will be in equilibrium if they are equal in magnitude and act in

opposite directions along the same straight line.

It will be seen, too, that if a number of forces act along the

same straight line, and the magnitudes offerees acting in opposite

directions be distinguished by difference of sign, the forces

will be in equilibrium if the algebraic sum of their magnitudes is

zero.

74. Equilibrium of Three Forces acting- at a Point.

Three forces acting at a point will be in equilibrium if any

one of them is equal in magnitude and opposite in direction

to the resultant of the other two.

It follows from this that if three forces acting at a point are

in equilibrium their lines of action must all be in the same

plane. The resultant of any two of the forces acts at the same

point as the forces, and its line of action is in the same plane as
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the lines of action of the two forces of which it is the resultant.

Hence, if the third force is opposite in direction to this resultant

its line of action must also lie in the same plane as the two

other forces.

It will be seen, too, that if three forces acting at three

different points are in equilibrium the lines of action of the

forces must all meet at the same point, and must all lie in

the same plane. For, if the three forces are in equilibrium any
one of them and the resultant of the other two must be

equal in magnitude, and must act in the opposite directions along

the same straight line. But the line of action of the resultant

of any two of the forces lies in the same plane as the lines

of action of the forces^ and passes through the point at which

these lines intersect. The line of action of the third force

must, therefore, also lie in the same plane as the lines of action

of the two other forces, and must pass through the point at

which these lines intersect. That is, the lines of action of the

three forces meet at one point, and lie in one plane.

Hence, if any three forces are in equilibrium they may be

considered as acting at a point, for their lines of action meet at

a point at which the forces may be supposed to act.

If three forces acting at a point are represented in magnitude
and direction by lines drawn in order from any starting point,

the three lines so drawn must form a closed figure. For, if the

forces are in equilibrium the resultant is of zero magnitude, and

the closing line, which represents the resultant in the representa-

tion diagram, must therefore be of zero length. That is,

the end-point of the diagram must coincide with the starting

point, and the lines of the diagram must, therefore, form a dosed

figure.

In this case the closed figure will be a triangle, and the

result here considered leads to the theorem, known as the triangle

of forces, and its converse.

The triangle of forces theorem states that if three forces
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acting at a point can be represented in magnitude and direction

by the sides of a triangle taken in order they must be in

equilibrium.

The converse of this theorem states that if three forces acting

at a point are in equilibrium they can be represented in

magnitude and direction by the sides of a triangle taken in

order.

Since all triangles, whose sides are parallel to three given

directions, must be similar triangles, it follows from the converse

theorem that if three forces acting at a point are in equilibrium,

and a triangle can be found whose sides represent the forces in

direction, they must also represent them in magnitude.

(P)

Fig 84.

That is, if a triangle can be found whose sides are parallel to

the lines of action of the forces, the lengths of the sides must be

in the same ratio as the magnitudes of the forces.

Thus, if three forces, P, Q, and R, acting at a point (Fig. 84),

are in equilibrium, and a triangle ABC is drawn with its sides

AB, BC, and CA parallel respectively to the lines of action

of the forces P, Q, and E, then the lengths of the sides AB, BC,

and CA must be in the same ratio as the magnitudes of the

forces P, Q, and K. That is, we must have

AB : BC : CA :: P : Q : R.

This result is of great service in solving simple statical

problems . relating to the equilibrium of three forces whose lines

of action are not parallel.
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Examples. 1. A heavy particle C is suspended by two threads,

AC and BC, from points A and B, 5 feet apart on a horizontal line,

f the threads AC and BC are respectively 3 feet and 4 feet in length,

d the particle weighs 10 grammes, find the tension in each thread.

Let A and B (in Fig. 85) represent the two points from which the

rticle at C is suspended by the threads AC and BC. The three

forces acting on the particle at the point C are its weight, W, acting

vertically downwards, the tension T
x in the thread AC, and the

tension T2 in thread BC. Through the point C draw CD vertically

upwards, and through A draw AD parallel to CB. It will now

be seen that the sides DC, CA, and AD of the triangle DCA are

parallel respectively to the lines of action of the forces W, T
lt
and T,,.

It follows, therefore, that the magnitudes of these forces are

proportional to the lengths of the corresponding sides.

Since the sides AB, BC, and

CA of the triangle ABC are re-

spectively 5 feet, 4 feet, and 3

feet in length, it follows that

the angle BCA is a right angle.

It can now be easily proved
that the triangle ADC is similar

to the triangle ABC, and that its

sides DC, CA, and AD are in the

ratio 5:4:3.

Since the three forces acting at

C are in equilibrium, we get at

once by the triangle of forces

that

:: 5:4:3.
Fig. 85.

The value of W is given as 10 gramme-weights, so that we have

10:Ti: :5:4

and 10:T, ::5:3

That is, the tension in the thread AC is equal to the weight of

8 grammes, and the tension in BC to the weight of 6 grammes.
This problem might have been worked by noticing that the sides

AB, BC, and CA of the triangle ABC, are respectively perpendicular

to the lines of action of the forces W, Tj, and T.2 . Hence, if we

suppose the triangle rotated through 90* in its own plane its sides

13
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would be parallel to the lines of action of the forces, and the lengths
of the sides would be proportional to the magnitudes of the forces.

That is, we have

^
AB:BC:CA::W:Ti: T2 ,

or W: TI: T2 :: 5: 4: 3,

as obtained above.

The construction given above is, however, more general, and can be

applied to any similar problem.
2. A heavy particle rests on a plane inclined at an angle of 30

to the horizontal, and is kept in position by a thread parallel to the

plane. If the reaction of the plane be supposed to be at right angles
to the plane, find its magnitude : find, also, the tension in the thread.

Let AB (in Fig. 86) represent a vertical section of the inclined

plane on which the particle rests at the point P.

The three forces acting on the particle at P, as shown in the figure,

are its weight, W, acting vertically downwards, the reaction R acting

at right angles to the plane, and the tension T in the thread acting

upwards in a vertical plane (the plane of the figure), and parallel to

the inclined plane.

Through P draw a line vertically downwards and through any

point, M, on this line
; draw MN at right angles to AB.

It will be seen that the sides PM, MN, and NP of the triangle

PMN are parallel respectively to the lines of action of the forces W,
R, and T, and that the lengths of these lines are, therefore, propor-

tional to the magnitudes of the forces they represent.

Since the line AB makes an angle of 30 with the horizontal, the

line MN must make an angle of 30 with the vertical. That is, the
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angle PMN in the triangle PMN is 30, and the sides PM, MN, and
NP of the triangle must, therefore, be in the ratio 2 :

*J'3 : 1.

We, therefore, have

W :T::2:1,

T-f,

and W:R::2:V3,

WV3.or E=
2

That is, if W denote the weight of the particle, the tension of the

w w Vs~
thread is

,
and the reaction of the plane is - '

or '866 W.

[Construct the triangle ABC by drawing a horizontal line through
A and a vertical line through B to cut the horizontal through A at the

point C. It will be seen at once that this triangle is similar to the

triangle MPN, and that the forces W, T, and R are proportional,

therefore, to the lengths of the sides AB, BC, and AC.

The side AB is usually called the length, the side BC the height, and

the side AC the base of the inclined plane AB. We, therefore, have

T _ Height
'

W
. Length'

R Base

W =
Lenyth'

Since these ratios are readily determined from the triangle ABC
when the inclination of the plane to the horizontal is known, the

triangle MPN need not be used in solving problems of this type.]

3. A ladder, weighing 24 pounds, rests on a horizontal floor against

a vertical wall. The foot of the ladder is 6 feet from the wall, and

the top rests on the wall at a height of 12 feet above the floor. If

the centre of gravity of the ladder is at a distance of one-third the

length of the ladder from its lower end, and if the reaction of the

wall is assumed to act at right angles to the face of the wall, find

the reactions at the wall and at the floor.

In Fig. 87 let AB represent the ladder resting on the floor at A and

against the wall at B, and let G denote the position of its centre of

gravity. The three forces acting on the ladder are its weight, W,
acting vertically downwards at G, the reaction of the wall, R19 acting

at B at right angles to the face of the wall, and the reaction of the

floor, R2 , acting at A.
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The three forces are in equilibrium, so that their lines of action

must meet at one point. The directions of the forces W and Rx are

known, and the point at which their lines of action intersect can

be determined. The direction of the force R.
2 is thus found to be

along AO, for its line of action must also pass through 0.

The three forces W, R 1? and R2 may thus be supposed to act at

the point 0. From produce the line of action of the force W to cut

the horizontal line through A at the point C.

Then, since the lines OC, CA, and AO of the triangle AOC are

parallel respectively to tile lines of action of the forces W, R15
and

R2 , the length of these lines must be proportional to the magnitude
of the forces.

From the data of the question the length of OC is 12 feet, and the

length of AC must be 2 feet, for, since AG= ^ AB, we must have

AC = i AD, and AD is known to be 6 feet in length. The side AO
is, therefore, Vl48 feet, or 12-165 feet in length. We, therefore,

have

W:R i:: 12:2,

and W:R2 ::12: Vl48

WV148R'= T'2
'

Hence, since the ladder weighs 24 pounds, we have W = 24,

and R2
= 2\/l48 = 24-33.

t ofThat is, the reaction at the wall, Rls is equal to the weight
4 pounds, and the reaction at the floor, R2 ,

is equal to the weight of

2 Vl48, or 24 "33 pounds. The direction of R.2 is seen from the figure

to be such that it makes an angle equal to the angle AOC with the

vertical on the same side of the vertical as the ladder. That is, the

direction of R., makes with the vertical an angle whose tangent is .

75. Equilibrium of a Number of Forces acting* at a

Point. If a number of forces acting at a point are in equili-

brium their resultant must be of zero magnitude. Hence, if the

forces be represented in magnitude and direction by lines
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drawn in order from any starting point, the lines so drawn

must, as explained above, form a closed figure. In the case of

forces whose lines of action all lie in one plane (Art. 61), this

closed figure will be a polygon, so that the condition for the

equilibrium of a number of co-planar forces acting at a point is

usually stated in a theorem known as the polygon of forces.

This theorem states that if a number of co-planar forces

acting at a point can be represented in magnitude and direction

by the sides of a closed polygon taken in order the forces must

be in equilibrium.

The converse of the theorem states that if a number of co-

planar forces acting at a point are in equilibrium, they can be

represented in magnitude and direction by the sides of a polygon

taken in order.

Fig. 88.

It is important to notice, however, that it cannot be said, as

in the case of the triangle of forces, that if the sides of a polygon

are parallel respectively to the lines of action of the forces, the

lengths of the sides are proportional to the magnitudes of the

forces. This evidently cannot be true, for polygons whose sides

are parallel are not necessarily similar figures. For example,

the two polygons shown in Fig. 88 have their sides parallel, but

they are evidently not similar figures.

The converse of the polygon of forces is thus much less

useful than the converse of the triangle of forces in the solution

of statical problems.

76. General Condition for the Equilibrium of Forces

acting
1 at a Point. If a number of forces acting at a point 0,
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as in Fig. 89, are resolved into rectangular components along

two straight lines, X'OX and YOY'. drawn at right angles to

each other through the point O, and the algebraic sum of the

components along each of the straight lines is zero, the forces

will be in equilibrium.

For, if X denote the algebraic sum of the components along

X'OX and Y denote the algebraic sum of the components along

Y'OY, then the resultant of the system of forces is given by

R2 = X2 + Y2
,

and, in order that R may be zero, it is evidently necessary that

X and Y should each be of zero value. The quantities X2 and

Y2
being squares are necessarily of positive sign, so that their

sum can be zero only when each quantity is of zero value.

Y

\

Y]

Fig. 89.

77. Equilibrium of a System of Co-planar Forces

acting* at Different Points in the Plane. A system of

co-planar forces acting at different points in the plane will be in

equilibrium if the algebraic sum of the moments of the forces is

zero about every point in the plane.

It has been explained in Art. 65 that a system of co-planar

forces must either be in equilibrium or must reduce to a single

resultant force or a couple.

If the system reduces to a single resultant force, the algebraic

sum of the moments will have different values for different

points in the plane, and will be of zero value only for points on

the line of action of the resultant.
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If the system reduces to a couple, the algebraic sum of the

forces will have the same value for all points in the plane and

will not be of zero value for any point.

It follows, therefore, that,. if the algebraic sum of the moments

of the forces is zero about every point in the plane, the system
must be in equilibrium.

In order to prove, in any given case, that a system of co-

planar forces is in equilibrium, it is evidently sufficient to show

that the algebraic sum of the moments is zero about any three

points not in a straight line. For, if the system has a resultant,

these three points must lie on its line of action. This, however,

is impossible, for the three points are not in a straight line.

The system cannot, therefore, have a resultant.

It should be noted, as the converse of what is stated above,

that, if a system of co-planar forces is in equilibrium, the

algebraic sum of the moments of the forces is zero about any and

every point in the plane.

The conditions for the equilibrium of a system of co-planar

forces may be stated in another way. Let each force of the

system be resolved into two components at right angles along

two given directions in the plane, then the system will be in

equilibrium if

(1) The algebraic sum of the components along each of these

two directions is zero, and

(2) The algebraic sum of the moments of the forces about any
one point in the plane is zero.

If the first of these two conditions is fulfilled, the system

cannot, as explained in Art. 7 6, reduce to a single resultant
;

and if the second condition is fulfilled, the system evidently

cannot reduce to a couple. The system must, therefore, be in

equilibrium.

78. Equilibrium of Parallel Forces. A co-planar system
of parallel forces is merely a special case of the general co-planar

system considered in Art. 77. The system will evidently be in
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equilibrium if the algebraic sum of the forces is zero, and if the

algebraic sum of the moments of the forces about any one point

in the plane is zero.

The special case of three parallel forces in equilibrium should,

however, be noticed.

Let the forces P, Q, and R, shown in Fig. 90, be in

equilibrium, and let any transverse line ABC cut their lines of

action at the points A, B, and C respectively. Since the three

forces are in equilibrium, any one of them may be considered

as equal and opposite to the resultant of the other two. Hence,

if the force R, reversed and acting at C, be taken as the resultant

of the forces P and Q acting at A and B respectively, we have,

by Art. 63,

P _ CB

Q~CA
Similarly, if the force P, reversed and acting at A, be taken

Fig. 90.

as the resultant of the forces Q and R acting at B and C

respectively, we have

Q _ CA
R
~

BA'

It follows at once from these two results that

P : Q : R : : BC : AC : AB.

That is, when three parallel forces are in equilibrium the

magnitude of each force is proportional to the segment inter-

cepted between the lines of action of the other two forces on

any transverse line drawn across the lines of action of the forces.
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79. Equilibrium of a Heavy Body Supported at a

Point. If a body is suspended by a thread attached at a point,

or if it is balanced on a pivot point, or if it rests on a plane

which it touches at only one point, it is in each case supported

by a single force acting at the point of support.

Hence, when a body is supported in this way it is acted on

only by its weight and the force supporting it, and if these

two forces are in equilibrium they must be equal in magnitude,

and must act in opposite directions along the same straight line.

The weight of the body acts vertically downwards through the

centre of gravity of the body. The supporting force acting

at the point of support, is, therefore, equal to the weight of the

body, and must act vertically upwards through the centre

of gravity of the body. That is, when the body is in equilibrium

the centre of gravity of the body lies on the vertical line

through the point of support. When the body is suspended by
a thread the centre of gravity is vertically below the point of

support, but when the body is balanced on a point, or when it

rests on a plane which it touches at only one point, the centre

of gravity is vertically above the point of support.

These three cases are shown at A, B, and C (in Fig. 91),
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where G represents the centre of gravity of the body, and A the

point of support.

If we consider a bodv supported at a fixed point, round which

the body is free to move in any direction (thus excluding

the case of a body resting on a plane as at C in Fig. 91), it will

be seen that the body is in stable equilibrium when its centre of

gravity is vertically below the point of support, in unstable

equilibrium when the centre of gravity is vertically above the

point of support, and in neutral equilibrium when the centre of

gravity is the point of support.

Fig. 93.

Thus, in Fig. 92 it will be seen that if a body in equilibrium

with its centre of gravity G vertically below the point of support,

A, receives a small displacement into the position indicated by
the dotted outline in the figure, the moment of the weight

of the body round A, the point of support, tends to restore the

body to its original position of equilibrium. That is. the body
is in stable equilibrium.

Similarly, it can be seen from Fig. 93 that if a body in

equilibrium with its centre of gravity G vertically above

the point of support, A, receives a small displacement into

the position indicated by the dotted outline in the figure,
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the moment of the weight of the body acting round A tends

to displace the body further from its original position of

equilibrium. This body is, therefore, in unstable equilibrium.

When a body is supported at its centre of gravity it is

obviously in neutral equilibrium, for the weight of the body
must act through the point of support in all positions of the

body. That is, the body is in equilibrium in any position.

When a body rests on a plane which it touches at only one

point, the point of support changes if the body is displaced, and

the stability of its equilibrium depends upon the form of its

base. When the base is spherical it can be shown that the body

is in stable or unstable equilibrium, according as its centre

of gravity is below or above the centre of the spherical base.

Thus, in Fig. 94 it can be seen that if the body shown

Fig. 94.

in the figure is displaced by tilting it on its spherical base, so

that the point at which it rests on the plane changes from A to

B, the moment of the weight of the body round B, the new

point of support, tends to restore the body to its original

position if the centre of gravity is at a point Gj, below C,

the centre of the base,* but tends to displace it further from

its original position if the centre of gravity is at a point G2 above

C. That is, if the centre of gravity of the body is at a point

below the centre of its base the body rests on the plane in

stable equilibrium, but if the centre of gravity is above the

centre of the base, the body will not in practice stand on

this base, but may, in theory, be balanced on it in unstable

*
It should be noticed that C will always be on the normal to the plane

at the point of support.
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equilibrium. An egg, for example, will not stand in stable

equilibrium on either end, for its centre of gravity is above the

centre of the (approximately) spherical base in each case. It

may, however, conceiveably be balanced in unstable equilibrium

on either end, but the slightest disturbance would bring it down

to its usual position of equilibrium. It should be noticed that

this position is one of neutral equilibrium for displacements

at right angles to its length, but in stable equilibrium for

displacements parallel to its length. In the one case the

centre of gravity coincides with the centre of the section of

the base in the plane of the displacement, arid in the other it is

below this point.

It will be seen at once that if the centre of gravity of the

body is at the centre of the base, as in the case of a sphere, then

the body will rest on the plane in neutral equilibrium.

It follows from what has been said above that when a heavy

body, free to rotate about a fixed line as axis, is in equilibrium,

the centre of gravity of the body must be in the vertical plane

through the axis, and the equilibrium will be stable, unstable, or

neutral, according as the centre of gravity of the body is below

the axis, above the axis, or on the axis.

80. Equilibrium of a Heavy Body Standing" on a Base
On a Plane. When a body rests on a plane the area enclosed

by a fine thread stretched tightly round the body at the surface

of the plane, is called the base on which the body rests.

A body resting on a plane on any base will stand in stable

equilibrium if the vertical line through its centre of gravity

falls within the base. If. however, the vertical through the

centre of gravity falls without the base the body will

overturn.

Thus, in the case of a cube of any material resting on an

inclined plane, the cube will stand in stable equilibrium if the

vertical line through its centre of gravity, G, falls within the

base ABCD, as in Fig. 95, but will evidently overturn by
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rotating round the edge AD if this vertical line falls without

the base as in Fig 96.

It will be seen from what has been said that a body resting

on a horizontal plane may be tilted up, or the plane on which it

rests may be tilted up without overturning the body so long as

the vertical line through the centre of gravity falls within the

base on which the body rests. The stability of a body resting on

any base may thus be considered to depend on the amount of

tilting necessary to bring the vertical through the centre of

Fig. 96.

gravity of the body to the edge of the base as a limiting

position.

If the height of the centre of gravity of a body above the

base on which the body rests is large compared with the

dimensions of the base, the limits of stability for the body will
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be comparatively narrow, for under these conditions a com-

paratively small tilt of the body will cause the vertical line

through the centre of gravity to fall outside the base. Thus, if

a cart is loaded with* a very high load so that the centre of

gravity of the cart and load is some distance above the ground,

the comparatively small tilt caused by one wheel passing over a

stone or a bank of earth may cause the vertical through the

centre of gravity to fall outside the wheel base, and the cart

may be overturned.

On the other hand, if the centre of gravity of body is low

that is, if its height above the base on which the body rests

is small compared with the dimensions of the base, the limits of

stability for the body may be very wide.

When a body can rest on a plane on different bases it will be

found, by comparing its stability in the different positions, that

the lower its centre of gravity is, the wider are the limits of its

stability. A brick, for example, can rest on a plane in stable

equilibrium on three different bases, and it is easily seen that the

limits of stability for these three positions become wider as the

centre of gravity is lowered.
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CHAPTER XIV.

FRICTION.

The Force Of Friction. When two plane surfaces are

pressed together, and force is applied tending to make one

surface move over the other, an opposing force is, in general, set

up in the plane of contact of the surfaces in a direction tending

to prevent the motion. This force is known as the force of

friction between the surfaces in contact. It is due to the

roughness of these surfaces
;
the small inequalities on one surface

engage with the corresponding small inequalities on the other

surface, and in this way each surface is able to exert a force on

the other in a direction tending to prevent any displacement of

one surface relative to the other in the plane of contact.

The force of a friction is thus a stress, as the term is used in

Art. 41, acting between the surfaces in the plane of contact

parallel to the surfaces. That is, the surfaces exert equal and

opposite forces on each other in this plane, the force acting on

each surface being directed so as to prevent its displacement

relative to the other in the plane of contact.

If either of the surfaces in contact is smooth there is no

friction between the surfaces, and no force is exerted in opposi-

tion to the displacement of one surface over the other. That is,

a smooth plane surface is unable to exert force on any surface in

contact with it in any direction parallel to itself in the plane of

contact. It can, therefore, exert force on any body in contact

with it only in a direction at right angles to itself.

That is, a smooth surface cannot at any point exert force in a
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direction tangential to the surface at that point, but only in a

direction normal to the surface at that point.

No real material surface can be so 2)erfec^y smooth that it

offers no resistance tangentially to the motion of another surface

over it, but a surface may in practice be so smooth that the

resistance, is negligibly small.

The use of oil as a lubricant between metal surfaces in

contact tends to reduce greatly the friction between these

surfaces.

82. The Limiting Value of the Force of Friction

between Two Plane Surfaces. Let a rectangular block of

any material be placed as at A in Fig. 97, with one of its

plane faces resting on the plane horizontal surface of a plate, B,

of the same material. If a force P is now applied to A in a

Fig. 97.

horizontal direction, the block A will tend to move by sliding

over the plate A. The friction between the surfaces in contact

will, however, oppose this tendency to motion, and a force

F acting in the plane of contact in a direction opposite to that

of P will be established.

If the force P is supposed to be at first very small, the force

F will also be very small and equal to P. Then, as P is

increased, the value of F also increases in such a way that the

two forces are always exactly equal in magnitude and opposite

in direction. The force P may be supposed to increase

indefinitely, but the force F evidently cannot increase beyond a

certain maximum limit determined by the nature of the surfaces

in contact and the pressure exerted between them. This maxi-

mum limit to the value of the force of friction between the
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two surfaces, is called the limiting value of the force of friction

between the two given surfaces under the existing conditions.

When the force P is increased to this limiting value the

block A will be on the point of slipping over the plate B,

and when P is increased beyond this limit the block will move

over the plate under the action of a force (P F) where F

denotes the maximum limiting value of the force of friction

between the two surfaces in contact.

Experiment 8. Get a rectangular block of wood about 6" x 3" x 2"

in size, and a plank of the same wood about 3 feet long, 1 foot wide,

and 1 inch thick. The surfaces of the block and plank should be

plane and even but not too polished or smooth.

Fig. 98.

Arrange these two pieces of wood on a table, as shown in Fig. 98,

so that by means of the pulley at P and the cord carrying the

scale pan at S, a force may be applied to the block A in a horizontal

direction. This force is applied and measured by the weights placed

in the scale pan and evidently tends, as the apparatus is arranged,

to make the block A slide over the surface of the plank B.

Begin the experiment by placing a small weight in the scale

pan and then go on adding to this weight until the force of friction

is no longer able to prevent slipping, and the block A begins to

slide over the board on which it rests.

The weight in the pan (together with the weight of the pan

itself) when the block A is on the point of slipping is evidently

the maximum or limiting value of the force of friction between the

two surfaces. For when the block is on the point of slipping the

force applied to A must be equal to the maximum force of friction
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acting in the opposite direction. The force of friction must evidently
be at its maximum value, or slipping would not be about to take

place.

The point at which slipping is about to take place is a little

difficult to determine exactly. the board B should be gently

tapped and the weight in the scale pan should be very gradually
increased as the slipping point is approached.

It will be found by repeating the experiment a number of times

that the value obtained for the limiting fricton is fairly constant.

It will generally be noticed in performing the foregoing

experiment that the force, which is only just sufficient to

bring the block A to the point of slipping over B, is sufficient,

after slipping once takes place, to keep the block in motion

and to give it a small acceleration. This shows that the

friction between the two surfaces at rest, relative to each

other, is slightly greater than the friction between the same

two surfaces when in motion relative to each other. That is,

the statical friction between the two surfaces is slightly greater

than the dynamical friction between the same two surfaces.

It is important to understand that the limiting value of

friction found by an experiment similar to that described above

is merely the limiting value in the particular case tested by the

experiment. It is obviously to be expected that any change
in the conditions under which the friction takes place will

change the magnitude of the limiting value.

83. The Laws Of Friction. The limiting value of the

friction between any two plane surfaces must obviously depend

upon the material on which the surfaces are formed and on

the degree of roughness of the surfaces. Although these

conditions may be specified more or less definitely, they cannot

be measured, and cannot, therefore, be involved in any quantita-

tive law. The only measurable quantities on which the friction

between the two surfaces may depend are the area of contact of

the surface and the pressure exerted normally between the surfaces.

The laws of friction deal, therefore, only with the relations
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between the limiting value of the friction and these two

measurable quantities for any two surfaces.

These relations can be determined only by experiment. The

relation between the limiting value of the friction for any two

given surfaces, and the area of contact of the surfaces may be

determined by the method of the following experiment.

Experiment 9. Set up the apparatus of Experiment 8 and find

the limiting value of the friction between the block and the plank
when the block rests on the plank successively on each of the three

sides of different area.

In this way the area of contact between the surfaces is varied

without altering the normal pressure between the surfaces, for the

normal pressure is in each case equal to the weight of the block,

and is, therefore, constant.

It will be found that the limiting value of the friction is practically

the same in each case, and is, therefore, independent of the area of

the surface in contact, provided the normal pressure between the

surfaces is constant.

The same result will be obtained by using a block and plate of

any given material, or a block of one material and a plate of another.

That is, the result is true for any two specified surfaces.

A block of the dimensions given in Exp. 8 is rather too small

for use in this experiment. A block 8" x 6" x 4" will give more

consistent results. The surfaces of the block and the plank should

be very even and uniform.

The result of this experiment shows, therefore, that the

limiting value of the friction between any two surfaces is

independent of the area of the surface of contact

The relation between the limiting value of the friction and

the normal pressure between the surfaces may be determined by
the following experiment.

Experiment 1O. Set up the apparatus of Exp. 8 with the block

resting on the face of greatest area.

The normal pressure exerted between the surfaces is, in this case,

equal to the weight of the block, but if weights are placed on the

block this pressure can evidently be adjusted to any required value

without altering the area of the surface of contact, and without altering

in any way (unless the pressure is made excessive) the nature of the

surfaces in contact.
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Hence, if we determine the limiting value of the friction, first

using the unloaded block, and then the block carrying a number of

different loads, we can obtain data from which we can determine

the relations between, the limiting value and the normal pressure.

It will be found, for any two specified surfaces that the ratio of

the limiting value of the friction to the normal pressure between

the surfaces is constant.

Example. In an experiment of this kind the following data and

results were obtained :

Weight of
Block.
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1. The limiting value of the force of friction between any
two surfaces is directly proportional to the normal pressure

exerted between the surfaces.

2. The limiting value of the force of friction between any
two surfaces is independent of the area of contact of the

surfaces.

The dynamical friction between two surfaces in relative

motion may evidently depend upon the velocity of the motion.

If in an experiment similar to those described above the weight

in the pan is made great enough to set the block in motion with

acceleration, it is found that the acceleration is uniform. This

shows that for the limited range of velocity possible in an

experiment of this kind, the limiting value of the friction is

constant, and practically independent of the velocity.

84. The Coefficient Of Friction. It has been explained in

the foregoing article that the limiting value of the friction

between any two surfaces is directly proportional to the normal

pressure between the surfaces, and that the ratio of the limiting

value of the friction to the normal pressure is, therefore, con-

stant for two given surfaces. This ratio is called the coefficient

of friction for the two given surfaces.

That is, the coefficient of friction for any two specified

surfaces is the ratio of the limiting value of the friction between

these two surfaces to the normal pressure between the surfaces.

Hence, if F denote the limiting value .of the force of friction,

and R the normal pressure between the surfaces, we have

F = Coefficient of friction,K

or, as the coefficient of friction for any two surfaces is generally

denoted by /x, we have

F
R
= *

or F = &.
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The experimental determination of the coefficient of friction

for any two given surfaces evidently involves the determination

of F, the limiting value of the friction corresponding to any

convenient value of K. the normal pressure between the

surfaces.

The determination can, therefore, be made conveniently by
the method of Experiment 10. This experiment is, in fact, a

determination of the coefficient of friction for the surfaces used,

and the example given at the end of the experiment shows how

the value of the coefficient of friction can be calculated from

the data of the experiment. The values of the ratio F/R,

given in the last column of the table in the example, are values

of
fji,

the coefficient of friction for the surfaces to which the

data apply, and the mean value of the ratio given at the bottom

of the table is the mean value given by the experiment of the

coefficient of friction for these surfaces.

The determination may also be made by the method of the

following experiment.

Experiment 11. Take a block and plate similar to that used in

Experiment 10, and place the blcck on the plate so that the surfaces

for which the coefficient of friction is required are in contact. If

necessary, one face of the block and the upper surface of the plate

may be coated or covered with the surfaces to be tested.

Place the plate and block in a table, and tilt the plate gradually by

raising one end until the block is on the point of slipping down the

inclined surface of the plate.

The coefficient of friction for the two surfaces is then given by the

tangent of the angle at which the surface of the plate is inclined to

the horizontal when slipping is about to take place.

For, let PQ in Fig. 99 denote the position of the plate when the

block A is on the point of slipping down the plane. The forces

acting on the block are its weight, W, acting vertically downwards

through its centre of gravity, the limiting friction F acting up the

plane, and the normal reaction of the plane R acting outwards at

right angles to the plane.

Let PN, the horizontal line through P, and QN, the vertical line

through Q, meet at the point N.
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The three forces, P, Q, and R, whose lines of action meet at the

point 0, are in equilibrium by the triangle of forces, as explained in

Example 2 in Art. 74, and we therefore have

F
R~

fJL
=

QN
PN'

QN
PN'

Hence, if the distances QN and PN are carefully measured for the

position at which the block A is on the point of slipping, the ratio of

the two distances, taken as above, gives the coefficient of friction for

the two surfaces in contact.

It will be seen that

|
= tan QPN.

That is, if a denote the angle at which the plane PQ is inclined to the

horizontal when slipping is about to take place, we have

F =
fj.
= tan a.

j\

Hence, if instead of measuring the distances QN and PN, the angle

Fig. 99.

NPQ or a is measured, the coefficient of friction, /n, is given by the

relation,

p.
= tan a.

For this reason, a, the angle whose tangent is /^, the coefficient of

friction, is sometimes called the angle of friction.

More accurate results can, however, be obtained in simple experi-

ments by using a fairly long plane, PQ, and measuring the distances

QN and PN to determine /u. ,

Example. In an experiment similar to that described above three

separate determinations of the slipping point were made, and the

distances QN and PN were measured for each determination.
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The following data were thus obtained :

QN
(mm.^
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between it and the pulley in the direction AB. The force of

friction between the belt and the pulley acts everywhere along

the tangent to the circumference of the pulley, and must, there-

fore, act on the belt at every point in a direction parallel to its

length and tending to pull it round from A towards B.

It follows from this that the pull on the spring-balance S will

be greater than the weight W by the force of friction exerted by
the pulley on the belt. Hence, if P denote the pull exerted on

the spring-balance, and F the force

of friction between the belt and the

pulley, we have

P = F + W,

or F = P - W.

The value of F can thus be

determined if the values of P and

W are known. It can also be

increased or diminished as may be

required by increasing or decreas-

ing the value of W. Thus, when

W is increased P also increases,

and as the pressure of the belt on

the pulley is in this way increased

the value of F must also increase.

Similarly, when W is decreased,

the values of P and F also decrease.

In order to use this brake to measure the power of an engine

or motor the pulley is driven by the engine, and the weight W
on the brake is adjusted until the engine is found to be exerting

its full power and working generally under the conditions under

which it is to be tested.

The reading of the spring-balance at S, and the rate of

revolution of the pulley (given by a speed indicator), are then

carefully noted and recorded.

Fig. 100.
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Let P denote the pull indicated by the spring-balance, and W
the weight on the brake, then, as above, we have

P - W = F.

Now, during each complete revolution of the pulley this force,

F, the force of friction exerted by the belt on the pulley, is

overcome through a distance equal to the circumference of the

pulley in the direction in which the force acts. Hence, if

r denote the radius of the pulley, and n the number of revolu-

tions made by the pulley per second, the work done against

friction per second is given by F . 2 irnr or 2 irnr (P W). That

is, the power absorbed and measured by the brake is given by

27TW(P-W).

Example. In the determination of the power of a motor by means

of a friction dynamometer the following data were obtained :

Weight on brake, . . 10 pound-weights.
Pull on spring-balance, . 16 ,,

Speed of revolution, . . 1,200 revs, per minute.

Radius of pulley, . . 6 inches.

Find the power absorbed by the brake in horse-power.

From the result given above, we have

Power abstracted = 2 irnr (P - W),

and in the English F.P.S. system we have

n = 20 (revs, per second).

r = -5 (foot).

P = 16 (pound-weights).
W = 10 ( ,, ).

The power absorbed is therefore

(2-r x 20 x *5 x 6) ft. -pounds per second,

1201T,
or horse-power,550

or '685 horse-power.

86. Reaction of a Rough Plane Surface. The reaction

of a smooth plane surface against any body pressing on it can act
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only in a direction normal to the surface. For, if we suppose
the reaction at any point P, Fig. 101, on the surface to act

in the direction PR, making an angle NPR, with the normal

PN, we can resolve the reaction into a normal component along

PN, and a component parallel to the surface along PM. But, if

the surface is smooth its reaction at any point cannot have

a component parallel to the surface, for a smooth surface cannot

exert force in a direction parallel to itself

The reaction of a smooth surface on any body can act, there-

fore* only along the normal to the surface.

The reaction of a rough plane surface may, however, act in a

direction inclined at an angle to the normal, for it is, in general,

the resultant of the normal reaction of the surface acting as in

P M

Fig. 101.

A

Fig. 102.

the case of a smooth surface, and the force of friction acting

parallel to the surface.

Thus, when a heavy rod is set up against a wall, with one

end resting on the ground, the reaction of the ground, as shown

at A in Fig. 102, is the resultant of the normal reaction R,

acting vertically upwards, and the frictional reaction F, acting

parallel to the ground in the proper direction to prevent slipping.

The magnitude of F will be only just sufficient to prevent

slipping, and may, therefore, have any value between zero and

its maximum limiting value.

Whatever value F may have within these limits, the direction

of the resultant reaction of the surface at A is such that it

makes an angle with the normal at A whose tangent is F/R.
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The size of this angle depends upon the value of F, and

may have any value between zero, when F is zero, and a certain

maximum value when F has its maximum limiting value.

If the rod is on the point of slipping F will have its limiting

value for the two surfaces in contact, and the ratio F/R will be

the coefficient of friction for the surfaces.

The greatest angle which the direction of the reaction at A can

make with the normal is, therefore, the angle whose tangent is

F/R, where F has its maximum limiting value, and F/R = /m,

where
JJL

is the coefficient of friction for the surfaces in contact.

That is, the greatest angle which the reaction of a rough surface

can make with the normal to the surface is the angle of friction.
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CHAPTER XV.

THE BALANCE.

87. Theory of the Balance. The general construction of a

simple form of balance has already been described in Art. 23.

The elementary theory of its construction and action can now be

considered.

Let A, B, and C, in Fig. 103, represent sections of the knife-

edges of the beam of a balance in a vertical section taken length-

wise through the beam at right angles to the edges. The edges

at A and B carry the scale -pans, and the edge at C is that

on which the beam rests and turns.

G

Fig. 103.

These knife-edges are fixed on the beam, so as to be exactly

parallel to each other at right angles to the length

of the beam, and they are usually set so as to lie truly

in the same plane. The central knife-edge at C is fixed exactly

midway between the two edges at A and B, so that the line AB
is bisected at C

;
and the two arms, CA and CB, are exactly

equal.

In order that the beam may set in stable equilibrium with the

line AB horizontal when balanced, without the scale-pans, on the

Itnife-edge at C, the centre of gravity of the beam and every-

thing rigidly attached to it must be at a point G below C on the

line CG, drawn through C at right angles to AB.
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In the case of a beam constructed in this way, it is clear that

if equal weights are suspended from the knife-edges at A and B
their resultant must act at the knife-edge at C, and cannot,

therefore, disturb the equilibrium of the beam. This can also

be seen by taking moments round the knife-edge at C
; for,

if the weights at A and B are equal, their moments round

C must be equal and opposite, since the arms CA and CB are

equal.

Hence, if scale-pans of equal weight are suspended from

the knife-edges at A and B, the beam will still set in stable

equilibrium with the line AB horizontal as before, and it will

always set in equilibrium in this position when the weights in

the pans are exactly equal.

A balance which fulfils this condition is said to be true.

It should be noticed that it is essential in order that a balance

may be true (1) that the arms of the beam should be equal, and

(2) that the scale-pans should be of equal weight. For, let R
and L denote the weights of the right-hand and left-hand pans

respectively, and r and I the length of the right-hand and left-

hand arms respectively, then if the balance is true the beam

must set in equilibrium with AB horizontal with no load in the

pans, and also when the same load W is carried by each pan.

We must, therefore, have

Rr = L/,

and also (R + W)r = (L + W)/.

Taking the difference of these two equations, we get

and it follows from this, since

Rr = L/, that R = L.

Hence, in order that a balance may be true, so that it sets in

equilibrium with the plane of the knife-edges horizontal when
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the pans carry equal loads, the arms of the beam must be equal,

and the pans must be of equal weight.

Another important characteristic essential to a good balance is

sensibility or sensitiveness. A balance must weigh truly, but

it is even more essential that it should be sensitive to a small

difference in the weights in the pans, and should indicate any very
small difference of this kind by an appreciable deflection of

the beam from its position of equilibrium.

Suppose a balance to carry a weight W in one pan, and

a weight (W -f x) in the other pan, and let it set in equilibrium

when so loaded, with the line AB inclined at an angle a

to the horizontal, as shown in Fig. 104.

B ^

(W)

Fig. 104.

Since the beam is in equilibrium in this position the moments

of the forces acting on it, taken round the central knife-edge at

C,. must balance each other. The resultant of the two equal

weights, W, acting at A and B must act at C, so that the

algebraic sum of their moments round C is zero, and they need

not be considered in taking moments round C. It follows,

therefore, that for equilibrium we must have the moment

of the weight x acting at A round C equal to the moment
of the weight of the beam acting at G round C. That is, if X
denote the weight of the beam, we must have
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Now, if a denote the length of the arm CA, and h denote the

distance CG, we have

CE = a cos a, and CF = h sin a.
-

We therefore get

x . a cos a = X/i sin a,

a
or tan a ^=-r- . x.

X.h

This result shows that, for a given value of x, the value of a

depends upon the value of . That is, for a given small
A./&

difference, x, between the weights in the pans, the value of

a, and the sensibility of the balance, may be increased by

making the ratio a/h as large as possible, and the weight of the

beam X as small as possible.

It will be seen, however, that if the sensibility of a balance is

made high by increasing a and decreasing h and X, the balance

will be very slow in action, for its period of oscillation about

any position of equilibrium will be very long. If we suppose

the beam and the pans, carrying equal loads, to be in oscillation

about its position of equilibrium, the moment tending to restore

it to its position of equilibrium for any angular displacement,

a, from this position is evidently X/i sin a, as explained above.

The period of oscillation depends, therefore, as explained in Art.

43, upon the value of X/t sin a, and the moment of inertia of

the oscillating system made up of the beam and the loaded

pans. If X/i sin a is small, and the moment of inertia great,

the period of oscillation may be very long, so that if X and h

are small, and a is comparatively large, the time of swing might
be so long that it would be impossible to make a weighing
in any reasonable time.

It thus appears that the very conditions which are necessary

for high sensibility are those which make the balance impractic-

ably slow in action. It follows, therefore, that in designing and
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constructing a balance a compromise must be effected between

sensibility and quickness of action. This compromise has led to

the construction of balances of two different types: long beam

balances of comparatively slow action, and short beam balances

of quicker action. A short beam balance is generally provided

with a somewhat long pointer moving over a finely divided

scale, and in some cases a reading microscope is used for

reading the position of the pointer on the scale. In this

way very small deflections of the beam from its zero position

can be detected, and the working sensibility of the balance is

increased.

In connection with what has been said above, it should be

noticed that the stability of the balance beam in its position of

equilibrium depends upon the centre of gravity of the beam,

G, being below the knife-edge C, and upon the 'moment XA sin a

being sufficiently great to make the beam come to rest always in

the same position. It is very important that the zero or

equilibrium position of the balance should be constant and

invariable, and, for this reason only, it is necessary that the

moment X/t sin a should not be too small.

The reasons for setting the knife-edges of the beam all in one

plane can now be considered. It is clear that when the pans

carry equal loads the forces acting on the beam at the knife-

edges A and B (Fig. 105) are equal, and that the resultant of

these two forces acts vertically downwards at a point C midway
between A and B. If the central knife-edge is set at this point

in the same plane with those at A and B, as in Fig. 103, this

resultant can have no moment round it, and it follows that the

sensibility of the balance and the moment of the couple tending

to restore it to its position of equilibrium (X.h sin a) are quite

independent of the load carried by the balance. The time of

swing of the balance will not, however, in this case be inde-

pendent of the load
; for, although the moment, XA sin

,
is

constant for all loads, the moment of inertia of the swinging
15
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system increases with the load, and the time of swing will

therefore increase as the load increases.

If, however, the central knife-edge is set, as at C' in Fig. 105,

in the plane bisecting AB at right angles, but above the point 0,

the beam will set in equilibrium with the points C and G
vertically below C', but the resultant force acting at C will have

moment round the knife-edge at C' when the beam is displaced

from its horizontal position of equilibrium. If E denote the

magnitude of the resultant acting at C, the moment acting on

the beam for a displacement a will evidently be X/i. sin a +

Rti sin a, where h denotes the distance C'G and h' the distance

C'C. From this result it will be seen that, under these condi-

tions, the sensibility of the balance will decrease as the load

4i i*

G

Fig. 105.

increases, and that the change in the time of swing as the load

increases will be less marked than when C and C' are coincident.

If the knife-edges were arranged so that C and G coincided, the

time of swing would be practically constant.

The case in which the central knife-edge is fixed below the

point C need not be considered, for it can be seen that, except

under certain evident conditions, a beam with the knife-edge so

arranged would be in unstable equilibrium.

It will be seen, therefore, that, in the case of a balance

constructed in the usual way, with the knife-edges all in one

plane, the sensibility will be practically independent of the load,

but the time of swing will increase as the load increases.

One very important essential in the construction of a balance

is the rigidity of the beam. The beam should be rigid enough
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to show no appreciable bending under the maximum load it is

designed to carry. The girder beams in general use for

Fig. 106. a, Central knife-edge ; b, b, end knife-edges ; c, c, stirrups for carrying pans ;

d, graduated bar for rider ; /, milled head for lowering the pan rests and releasing

the beam ; g, pan rests for arresting and supporting the pans ; h, spirit level ;

i, levelling screws
; K, gravity bob

; M, I, I, arrangement for moving the rider.

accurate balances are designed to give the necessary rigidity

without making the weight of the beam unduly great.
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The general details of the construction of an accurate balance

are somewhat complicated, and are best learnt by studying the

construction and action of a good balance practically in the

laboratory, and by working with it.

A good form of balance is shown in Fig. 106, and an enlarged

view of the beam of this balance is given in Fig. 107.

In connection with the theoretical discussion given above, it

should be noted that the small screw vane V, shown in Fig. 107,

K

Back view.

Fig. 107.

is provided as a means of adjusting the position of the centre of

gravity of the beam so that it lies, as explained above with

reference to Fig. 103, below C on the line CD, which bisects AB
at right angles at C. It will be seen that by turning the vane

to the right or to the left,. the position of the centre of gravity

is moved very slightly in the same direction. The gravity bob

K, shown in the same figure, is provided for raising or lowering
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the centre of gravity of the beam by screwing the bob up or

down. It thus acts as a fine adjustment for adjusting the

sensibility of the balance.

88. Practical Determination of the Sensibility of a

Balance. The sensibility of a balance is usually determined

by finding the difference in load which will deflect the pointer

attached to the beam through one division on the scale over

which it moves.

Thus, if it is required to determine the sensibility of a

balance when the load in each pan is 20 grammes, the method

of the following experiment might be adopted.

Experiment 12. Find the sensibility of the given balance for a

load of 20 grammes in each pan. Set the beam of the balance free,

and see if it swings freely and regularly, and is generally in proper

adjustment.
Then place a 20 gramme load in each pan, and find the division on

the scale at which the pointer comes to rest with this load on the

pans. This may be done by simply waiting until the beam stops

swinging, and then reading off the division of scale at which the

pointer comes to rest. It can, however, be done much more expedi-

tiously by following the movement of the pointer over the scale as the

beam swings, and reading the turning points for any three successive

swings. If then we take the mean of the first and third readings,

and then the mean of this mean and the second reading, we get

the reading at which the pointer would come to rest. Thus, if

the three observed turning points are at divisions 6, 17, and 8 on the

scale,* the pointer would come to rest at the division marked 12 on

the scale.

[The reason for this method of taking the mean of the observed

readings is readily understood. If the beam in swinging were quite

free from friction and air resistance, its swing would obviously be of

constant amplitude, and the resting point could at once be found by

taking the mean of any two successive turning points. On account,

however, of the damping effect of friction and air resistance,

the swings gradually decrease in amplitude, and in order to find

.

* The scale is supposed to be numbered from one end, not from the

middle, as it sometimes is. The need for plus and minus signs to

distinguish between right and left readings is thus avoided.
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the resting point by observing the turning points it is necessary
to take the mean in such a way as to eliminate the decrement due

to damping. If this decrement is small it may be supposed to be the

same for several consecutive swings, so that if we denote it by
x it will be seen that with no damping the pointer would swing
between two constant turning points at, say, the pth and qih
divisions on the scale ; but with damping, the successive turning

points for a small number of swings would be approximately at

the divisions p, (q-x), (p + 2x), (q-3x), (p + 4x), &c., on the scale.

Now, if we take any three consecutive turning points, such as (q
-

x),

(p + 2x), and (g-3a;), it will be seen that the mean of the first

and third is (q
-
2x), and that the mean of this mean and the second is

the mean of (q-2x) and (p + 2x), or the mean of p and q which

is obviously the true resting point.

It will be seen that the same result is obtained by taking any
odd number of successive turning points, and taking the mean, first

of those for swings to the right, then of those for swings to the

left, and, finally, the mean of the two means so obtained.]

Having found the resting point with a load of 20 grammes in each

pan, now place a small weight, say, a milligramme, in one pan,

so as to make a difference of one milligramme in the weights carried

by the pans, and find again the reading on the scale at which

the point comes to rest. Suppose this resting point to be at 7

on the scale.

It follows from these data that a difference of 1 milligramme in the

loads on the pans changes the resting point of the pointer through
5 divisions on the scale.

That is, a difference of *2 milligramme between the weights in the

pans gives a deflection of 1 division on the scale. This is the

sensibility of the balance when the load on the pans is 20 grammes.
We can find in the same \vay the sensibility of the balance for

different loads, from no load to the full load the balance can carry.

It will be found, as a rule, that the sensibility is practically the

same for all loads. It generally decreases slightly as the load is

increased.

From the data obtained a curve may be plotted showing how the

sensibility varies, in the case of the given balance, with the load.

The accuracy of this experiment depends upon the care with which

the different resting points are determined. Each resting point
should be determined as the mean of several consistent determinations.

It will be understood that the sensibility of a balance found

in the manner explained in this experiment, is a purely
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empirical quantity, which depends for its absolute value on

the length of the scale divisions, and also on the length of

the pointer.

When the sensibility of a balance is known the weight of

a body may be determined without wasting time in making the

final small adjustments of the weights which are usually

necessary to bring the beam exactly into its position of

equilibrium. If it is found when the adjustment is nearly

complete that the resting point is n scale divisions from the

balancing position, and if s is the sensibility of the balance

in milligrammes per scale division, the weight of the body

is evidently ns milligrammes greater or less than the weight

in the pan, according as the weight pan is lighter or heavier

than the other. This method of weighing is sometimes called

the method of weighing by vibrations.

89. The Use Of Riders. Let the arm of a balance be

divided into ten equal parts, and let the divisions be numbered

from to 10 outwards from the centre, the division marked

being at the central knife-edge, and the division marked

10 at a terminal knife-edge. The distance of any one of these

divisions from the central knife-edge is thus equal to a certain

number of tenths of the length of the arm, and it follows at once,

by the principle of moments, that if a given weight is carried

by the beam at that division, it is equivalent only to a certain

number of tenths of its real weight placed in the scale-pan.

Thus, if a centigramme is placed on the beam at the division

marked 3, it is equivalent to 3 milligrammes in the scale-pan, or

if placed at the division marked 8, it is equivalent to 8 milli-

grammes in the scale-pan. Hence, if a piece of platinum wire,

weighing exactly one centigramme, is bent into the form shown in

Fig. 108, so that it can be placed as a rider at any point on the

divided beam, the use of milligramme weights can be dispensed

with, for any weight smaller than a centigramme can be obtained

by adjusting the position of the rider on the beam. If each of
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the ten divisions on the arm is further subdivided into ten

divisions, the equivalent weight of the rider at any point on the

arm can evidently be obtained in milligrammes and tenths of a

milligramme, by simply reading the position of the rider on the

scale marked along the divided arm. Thus, if the rider is

placed at the 63rd division on this scale it is equivalent to

6*3 milligrammes in the scale-pan.

The process of weighing with a rider thus resolves itself into

the following procedure. The weighing is first made to the

nearest centigramme by placing weights in the pan in the usual

way. The position of the rider on the beam is then adjusted

Fig. 108.

until an exact balance is obtained. The required weight is then

obtained from the weights in the pan and the position of the

rider. Thus, if the weight in the pan is found to be 3 '5 4

grammes, and the rider is at division 36 on the beam scale, the

weight required is 3*5436 grammes.
It is sufficient for most purposes if the beam is divided only

along one arm on the same side as the pan in which the weights

are usually placed in weighing. It is usual, however, to divide

the beam along the whole length between the terminal knife-

edges, so that the weight equivalent of the rider may be added

to, or taken from, the weight in either pan, as may be

convenient.
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In most balances a special bar is attached to the beam for the

purpose of carrying the rider and special appliances are provided

for putting on and taking off the rider without opening the

balance-case or disturbing the beam. In Fig. 106 the rider bar

is shown at RR, and the lever for lifting and carrying the rider

is shown at L.

The general details relating to the use of a rider on an

accurate balance are best learnt by actual practice in weighing.

90. Special Methods Of Weighing. In cases where the

accuracy of the balance is in doubt, any weighing may be tested

by the following special methods.

Place the body to be weighed in one pan, and counterpoise it

exactly with fine shot or pieces of wire in the other pan. Then

remove the body and put weights in its place until an exact

balance is again obtained. By this method the weights must

give truly the weight of the body, whether the balance is

accurate or inaccurate, provided it is sufficiently sensitive for the

purpose. The weights, it will be seen, are placed in the same

pan as the body, and they balance the same counterpoise under

exactly the same conditions, so that their weight must be

exactly equal to the weight of the body.

Another method of weighing which is useful for detecting and

eliminating any error that may be caused by the arms of the

balance not being exactly equal.

The body is weighed in the ordinary way, first in one pan

and then in the other, and the geometric mean of the two

weights so obtained is taken as the true weight. When the

two weights are very nearly equal, as they always would be in

practice, a sufficiently accurate result is obtained by taking their

arithmetic mean instead of the geometric mean.

Let P and P' denote the two weights obtained by weighing

the body first in the left pan and then in the right pan, and let

I and r denote the lengths of the left and right arms respectively

of the balance. Then, if W denote the true weight of the body,
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and if we assume the balance to be in exact equilibrium when

there is no load in the pans, we must have

PI = Wr,

and PY = W/.

From these relations we at once get

PP' - W 2
,

or W -

That is, the true weight W is the geometric mean of the false

weights P and P'. When, however, P and P' are nearly equal,

so that P' = P + ,
where S is small, we have

w = Vp(PTiy=r(i +
)
= P

(1
+ = P +

That is, when P and P' are nearly equal, the true weight W is

approximately equal to their arithmetic mean.
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CHAPTER XVI.

GENERAL PROPERTIES OP MATTER.

91. The Constitution of Matter. A piece of matter of any

particular kind is supposed to be made up of minute ultimate

particles or molecules which are assumed to be the smallest

particles of that particular kind of matter which can exist

independently. If the piece of matter is supposed to be divided

and subdivided into smaller and smaller pieces, the ultimate

particles into which it can conceivably be divided, and still

continue to be matter of the same particular kind, are its

molecules. As explained below, a molecule is generally divisible

into component parts called atoms, but the molecule is the

physical unit in the constitution of matter, and any particular

kind of matter, whether it be an element or a compound, is

supposed to be built up of its molecules and not of its atoms

as constituent units.

The molecules which make up any piece of matter are

supposed to be aggregated together without being actually in

contact. Force is exerted mutually between the molecules

and the group of molecules which constitute any portion of

matter are held together by these intermolecular forces. It is

supposed also that the molecules of a body are not at rest,

but in rapid vibratory motion.

It is thus assumed that the molecules of a body are free

and distinct from each other, that a stress of attraction or
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repulsion
*

exists between each molecule and every surrounding

molecule within its range,f and that every molecule is in rapid

vibratory motion.

A piece of matter considered as a system of molecules may
thus possess molecular potential energy in virtue of the configura-

tion of the system, and molecular kinetic energy in virtue of the

motion of its molecules.

The size of a molecule is almost inconceivably small. We
have no exact knowledge of the actual form or size of a

molecule, but approximate estimates can be made in several

ways of the probable order of magnitude of the diameter of

a molecule considered as a small spherical particle.

Some idea of this magnitude may be obtained by considering

that a piece of ordinary gold leaf, which is less than four-

millionths of an inch in thickness, probably consists of more

than a hundred layers of molecules.

Lord Kelvin illustrates the size of a molecule by stating

that if a drop of water were magnified to the size of the

earth the molecules would be about the size of an orange or

a cricket ball.

Although the molecule is the unit in the physical constitu-

tion of a piece of matter, the molecule of any substance is itself

a group of component parts called atoms. Thus a molecule of

water is a group of three atoms made up of one atom of oxygen
and two atoms of hydrogen. Similarly, a molecule of chalk is

a group of five atoms made up of one atom of calcium, one atom

of carbon, and three atoms of oxygen.
When the molecules of any substance are made of atoms of

*
It has been suggested that the law expressing the stress between two

molecules is such that the stress is one of attraction or repulsion, accord-

ing as the distance between them is greater than or less than a certain

small limit.

tlf the stress between two molecules decreases very rapidly with

increase in their distance apart, it may become negligibly small beyond
a certain small range.
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different kinds the substance is said to be a compound substance,

but when the molecules of a substance are made up of one or

more atoms of the same kind, the substance is said to be an

elementary substance. Thus water and chalk are compound

substances, but a substance, such as oxygen or hydrogen, whose

molecules are made up of two similar atoms is an elementary

substance. The atoms of an elementary substance are said to

be atoms of that substance, although, strictly speaking, the

substance is made up only of molecules.

A molecule is thus supposed to be a group of atoms held to-

gether by interatomic forces in much the same way as the molecules

of a piece of matter are held together by intermolecular forces.

Until quite recently an atom was considered to be an

ultimate and indivisible particle of matter. There is now,

however, abundant experimental evidence to establish the

theory that an atom is really a group of component particles

held together by the stresses existing between the particles.

There are probably only two kinds of particles which enter in

this way into the constitution of atoms, and it is probable that

the atoms of different substances differ from each other only in

the number and grouping of their component particles. It thus

appears to be possible for the atoms of one substance to change

by a process of disintegration and regrouping into the atoms of

another substance. That is, any substance in which the atom is

a large and complex group may possibly change into a substance

in which the atom forms a smaller and simpler group. This

process of change from one substance to another may take

a very long time or a very short time, and may pass through

many well-marked intermediate stages.

The element radium derives the interest which at present

attaches to it from the fact that its atoms are supposed to be

in process of disintegration, and there is satisfactory evidence

to show that the element helium is derived from radium, as

a result of this disintegration.
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92. States Of Aggregation Of Matter. The three normal

states of aggregation of matter are the solid state, the liquid

state, and the gaseous state.

In a piece of matter in the solid state the molecules are so

aggregated together under the control of intermolecular stresses

that their relative positions are fixed, and every molecule is

able to offer resistance to displacement in any direction from

the position it occupies in the body. That is, a molecule may
be displaced slightly from the mean position it occupies without

causing any rupture in its relations with the sur-

rounding molecules, but the adjustment of the

stresses between it and the surrounding molecules

is disturbed by the displacement, and a resultant

stress which opposes the displacement, and in-

creases as the displacement increases, is thereby

set up. Hence, if a force is made to act on any

particle in a solid body, the particle may be

slightly displaced in the direction of the force,

but the displacement sets up in the material

around the particle an opposing stress which

resists the displacement, and tends to restore

the displaced particle to its initial position.

If the force applied to the particle is sufficiently

great to displace the particle beyond a certain

limiting position, the particle breaks away from

the rest of the material, or becomes the starting point of a

fracture in the material.

It will be seen from what has been said, that if two equal
forces acting in opposite directions along the same straight line,

act on a solid body at points A and B, as in Fig. 109, the

material of the body between A and B will be subjected to a

tension or a pressure, and, in virtue of its properties as a solid,

will be able to sustain and resist this stress unless it exceeds

a certain limit. The body will be slightly stretched or



GENERAL PROPERTIES OF MATTER. 239

compressed by the applied stress, but the internal stress set up in

the material by this change in the molecular configuration of

the body, will resist and balance the applied stress up to the

yielding point of the material.

When a block of any solid material rests on the ground

under the action of its own weight, it is evident that any

horizontal slice of the block must be subject, in this way, to

pressure. The weight of the overlying portion of the block

acts vertically downwards on the slice, and the resistance of the

underlying portion on which the slice rests acts vertically upwards
on it, and the slice is compressed or squeezed together under

the action of these two forces. The internal stress set up in

the material of the slice by this compression is, however, able to

balance the external stress, and the slice, although slightly

compressed, is able to sustain the pressure to which it is subject.

It follows from what has been said that a given piece of

matter in the solid state must, under given conditions, have a

definite volume and a definite form, and that it is able to offer

resistance to any change in configuration which involves a change

of volume or a change of form.

In matter in the liquid state the molecules are also aggregated

together under the control of intermolecular stresses, but the

relations between any moleculfe and those surrounding it are

such that it is free to move about in any direction in the liquid.

That is, a given molecule in any mass of liquid occupies no

particular position in the mass, and offers no resistance to dis-

placement in any direction from any position it may happen to

occupy.

This last statement is, however, subject to an important

qualification. If force is applied to any molecule in a mass of

liquid under such conditions that the molecule can be displaced

only by forcing it nearer to, or further from, the surrounding

molecules, it offers a very great resistance to displacement. That

is, a definite mass of liquid possesses a definite volume, and offers
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very great resistance to change of volume by compression or

expansion.

A mass of liquid
*

cannot, however, be said to possess a

definite form or shape, and it is unable to offer even the smallest

resistance to any change of shape which may be impressed on it.

If, therefore, a mass of liquid is subject to the action of any
force however small, which tends to change the existing shape

of the mass, and is not prevented from doing so by the action of

other constraints, the mass will undergo continuous and pro-

gressive change of shape, and will extend or flow out in all

directions in which it is free to move.

Thus, if we imagine a cube of water, or any similar liquid

placed as a cube on a plate, we know from ordinary experience

that it would almost instantaneously spread out, or flow out into

a thin layer covering the bottom of the plate. If we consider

what takes place in this case, we can see that any thin hori-

zontal layer of the liquid in the cube is subject to pressure due

to the weight of the overlying liquid ;
this pressure forces the

upper and lower molecules of the layer in between the inner

molecules in such a way that, while the layer is not in the least

compressed, it is compelled to spread out, or flow out horizontally

in all directions. Since the liquid is not compressed, the mole-

cules offer no resistance to the displacements thus imposed on

them, and the flow goes on freely under the action of the

smallest force. This process goes on progressively in every layer

until the liquid finally comes to rest as a thin layer covering the

bottom of the plate.

In the case of a mobile liquid, such as water, the process takes

place too rapidly to be observed, but in the case of a thick

viscous liquid, such as syrup, the process is a slow and gradual

one, and may easily be observed. If a quantity of syrup r

for example, is poured on a large plate, it at first forms an

irregularly shaped heap in the middle of the plate. This
* The effects of Surface Tension are not considered here. See Art. 118.
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heap, however, gradually spreads out horizontally, and ultimately

the liquid flows all over the surface of the plate and comes

to rest only when further extension in a horizontal direction

is prevented by the sides of the plate.

If a quantity of liquid were poured on a plane horizonal

surface of indefinite extent it would spread out horizontally

in this way until the film of liquid on the surface is so reduced

in thickness that it begins to exhibit effects due to surface

tension.

It follows directly from what has been said above, that a liquid

may be made to flow or may be poured from one vessel to

another, and that when poured into any vessel it readily

assumes the form imposed on it by the interior of the vessel.

When a mass of liquid is at rest in any containing vessel the

conditions are very different to those considered above. Any
thin horizontal layer of the liquid is subject to the pressure due

to the weight of the overlying liquid, and this pressure, as

explained above, tends to make the layer flow outwards in

a horizontal direction. This outward flow is, however,

prevented by the pressure exerted inwards by the walls of the

containing vessel on the edge of the layer. The layer will thus

be compressed until the opposing stress set up in the liquid

balances the external stress, and equilibrium is established.

Every layer of the liquid is in this way supported in equilibrium,

and the whole mass of liquid rests in equilibrium in the

containing vessel.

Force can be applied to the surface of a liquid only as a

pressure or tension* uniformlyf distributed over the surface and

acting normally or at right angles to the surface
;
and a mass of

liquid can be maintained in equilibrium within any given

* The application of pressure is easily understood ; tension can be

applied only under certain special conditions, and need not be further

considered.

t The weight of the liquid is here neglected.
16
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boundary only by the action of a uniform stress of this nature

all over the boundary surface. Thus, if a quantity of liquid,

supposed to be without weight, is contained in any vessel open

to the air, it will be subject to the atmospheric pressure over its

free or exposed surface, and the walls of the vessel will exert

everywhere an equal pressure per unit area acting normally over

the whole of the surface with which they are in contact.

Since the pressure which can be exerted by any surface on a

liquid, or the pressure which a liquid can exert on any surface in

contact with it, must, in a weightless liquid, be uniformly

distributed over the surface, it is most conveniently measured as

the pressure per unit area, for the pressure per unit area must be

constant. The pressure exerted on a liquid or by a liquid

is, therefore, usually measured and expressed as pressure per

unit area.

It will be seen that pressure acting at the surface of a liquid

must be at all points normal or at right angles to the surface
;

if we suppose the pressure acting on the liquid at any point to

have a component parallel to, or tangential to the surface,

the molecule at that point would be displaced in the direction in

which the component acts, for a molecule in a liquid can

be displaced in any direction by the smallest possible force.

That is, the liquid can be in equilibrium throughout its

mass only when the pressure over the surface of the liquid is at

all points normal to the surface. It will be seen, too, that

the pressure must be uniform if distributed over the boundary

surface, for if the pressure per unit area is greater at one

point than another, the liquid would flow from the region of I

highest pressure to the regions of lower pressure. That is,

the liquid would flow* through the boundary surface at the areas

of low pressure, and equilibrium would be impossible. For

example, if we attempt to compress a liquid in a vessel with

*
It must be remembered that the liquid is supposed to be without

weight.
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holes in its walls, the liquid will be forced out through the

holes if the external pressure acting on the liquid through

the holes is less than that imposed on the liquid by the

end-surface of the compressing plunger and the walls of the

vessel. If, however, the external pressure over each hole is

equal to the internal pressure impressed on the liquid, the mass

of liquid in the vessel would be in equilibrium, and no flow

would take place through the holes.

It will readily be understood from what has been said

that a mass of liquid in equilibrium under the action of a

uniform normal pressure at its boundary surface is really subject

to this pressure everywhere throughout its mass. That is, if we

take, anywhere in the liquid, an imaginary surface separating

any two portions of the liquid, the pressure exerted mutually

between the two portions across this surface is normal to

the surface, and equal to the pressure at the boundary surface.

This pressure expressed, as explained above, as pressure

per unit area is, therefore, appropriately called the pressure in the

liquid.

In the case of a real liquid possessing weight the conditions

for the equilibrium of a mass of liquid are complicated by
the effect of the weight of the liquid. It will be seen that

the pressure impressed on a thin horizontal layer at any depth

in the liquid must be greater than the boundary pressure

impressed on the free surface of the liquid by the additional

pressure due to the weight of the overlying liquid. It follows

from this that the pressure at the boundary surface of the

liquid cannot be uniform, but must increase with depth below

the level of the free surface of the liquid.

The properties of a liquid are mere fully considered in

Chapter xx.

The plastic state, which occurs in most substances during

tj'
transition from the solid to the liquid state, is dealt with in

Art. 43 in Part iv. on Heat.
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In matter in the gaseous state the molecules are supposed to

be so far apart that the intermolecular forces are negligibly

small. That is, the molecules are not aggregated together

under the control of the intermolecular forces, but are free to

move about in any direction quite independently of each

other.

It follows from this that a quantity of matter in the gaseous

state cannot possess molecular potential energy of configuration,

for if the intermolecular forces are negligibly small, no work is

done against intermolecular force in effecting any change of

configuration.

It is assumed, in accordance with a theory known as the

kinetic theory of gases, that the molecules of a gas move about in

the space occupied by the gas with great velocity, and that they

are constantly in collision with each other, and with the walls

of the space in which they are enclosed. The path of any

molecule between any two successive collisions is supposed to be

a straight line, and although the mean or average length of this

free path is really very short, it is long compared with the inter-

molecular distances in solids and in liquids. The mean length

of this free path from collision to collision is called the mean free

path of the molecule.

If a small quantity of any gas is introduced into any large

space unoccupied by any other matter (a vacuum), we know

from experience that it at once expands and fills the whole

space. Or, if a small quantity of one gas is introduced into a

large space already occupied by another gas, we know that it

quickly spreads throughout the whole space, for after a very

short time indications of its presence may be found in any part

of the space.

These results are evidently in accord with the kinetic theory

for by this theory the molecules of a gas are free to extend

their excursions in space outwards in all directions, and the only

limit which can be set to the space which might be occupied by
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a given quantity of gas, is the mechanical limit set by the wall

or boundary enclosing the space.

It is a well-known experimental fact that a quantity of gas

enclosed in any space exerts pressure on the walls of the

enclosure. This pressure, which is exerted mutually between

the gas and the walls of the enclosure, acts everywhere at right

angles to the surface, and is measured by the pressure per unit

of area. It is called the pressure of the gas, for it is found that

it exists everywhere in the gas as a stress acting normally

across any interface separating any two contiguous portions of

the gas.

The pressure which a given quantity of any particular gas

exerts on the walls of the enclosure containing it, is found to

depend on the capacity of the enclosure that is, on the volume

occupied by the gas. If this volume is decreased the pressure

increases, and if the volume is increased the pressure decreases.

That is, if the gas is compressed into a smaller volume the

pressure increases, but if it is allowed to expand and occupy a

larger volume, the pressure decreases.

These facts are explained on the kinetic theory by supposing

that the pressure which a gas exerts on the walls of the enclosure

containing it, is due to the continuous bombardment of the walls

by the molecules of the gas. Every second a very large, and

practically constant, number of molecules moving with high

velocities strike and rebound from the walls of the enclosure,

and by so doing exert a practically continuous and constant

pressure on the walls.

Example. A rain of small indiarubber balls, each weighing
1 gramme, falls vertically upon a plane horizontal surface, and, on an

average, 1,000 balls fall upon every square metre of the surface every
second. If the balls strike the surface with a velocity of 20,000 cms.

per second, and rebound from it vertically upwards with the same

velocity, find the average pressure exerted on each square centimetre

of the surface.

Every ball, by its impact with the surface, loses its downward
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momentum, and gains an equal upward momentum. That is, every
ball loses a momentum of (1 x 20,000) C.G.S. units in one direction,

and gains (1 x 20,000) C.G.S. units in the opposite direction. The

total change of mommtum which every ball undergoes by its impact
on the surface is, therefore, (2 x 20,000) C.G.S. units.

The number of impacts which take place in one second over a

square metre of the surface is 1,000, so that the total change of
momentum per second produced by the resistance offered by a square
metre of the surface, to the rain of balls impinging on it, is

(1,000 x 2 x 20,000) C.G.S. units,

or, 4 x 107 C.G.S. units.

But this rate of change of momentum measures the resistance offered

by the surface in C.G.S. units offorce. That is, the resistance offered

by a square metre of the surface to the rain of balls impinging on it ;

or, in other words, the pressure exerted by the rain of balls on every

square metre of the surface, is 4 x 107 dynes. The average pressure
exerted on one square centimetre will, therefore, be 4,000 dynes, or

nearly 4 'OS gramme-weights.

If this assumption as to the nature of the pressure exerted by
a gas on the walls of the enclosure containing it is accepted,

it is evident that the pressure must increase as the volume

occupied by the gas decreases, for as the volume decreases

the molecules become more crowded together, and the number

of impacts per second on any given area of the walls must

increase. Similarly, the pressure must decrease as the volume

occupied by the gas increases, for as the volume increases

the molecules become less crowded together, and the number of

impacts per second on any given area of the walls must decrease.

It can be shown, too, that the manner in which the pressure

of a gas actually varies with its volume, as established by

experiment, is the same as the manner in which it ought,

theoretically, to vary in accordance with this assumption.

It will be seen from what has been said that the aggregation

of the molecules in the gaseous state differs essentially from

that which obtains in the solid state or in the liquid state.

A gas resembles a liquid in the fluidity which results from its
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mobility to resist change of form, but it differs essentially from

a liquid in its indefinite compressibility and in its power of

indefinite expansion.

It should be noticed that resistance is offered by a solid or a

liquid both to compression and to expansion, and that this resist-

ance is due in each case to an opposing intermolecular stress set

up in the material. In a gas there is no intermolecular stress

opposing compression or expansion. Increase of pressure is

necessary, as explained above, to produce compression, but

expansion takes place freely when the pressure is decreased.

The general properties of a vapour, and the distinction

between a vapour and a gas, are dealt with in Chapter ix. of Part

iv. on Heat. The conditions under which the liquid and

gaseous states become continuous, and the critical state are

also dealt with in the same chapter.

93. Inertia. The inertia of matter, as explained in Art. 35,

in dealing with Newton's first law of motion, is one of its most

characteristic properties.

It is the property in virtue of which a body that is, a piece

of matter continues in its state of rest or of uniform motion in

a straight line unless acted on by the force.

It will be understood, also, from what has been said in

Chapter ix.. that it is the property which enables quantity

of matter to be measured in units of mass.

94. Gravitation. The power which every piece of matter

possesses of attracting every other piece of matter is one of the

fundamental properties of matter. The force of attraction

exerted mutually between any two pieces of matter is generally

known as gravitation.

The most familiar example of gravitation is the attraction

exerted between the earth and bodies on its surface. The

force of attraction exerted by the earth on any body at its

surface is usualty called the force of gravity, and constitutes,

as already explained, the weight of the body.
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Gravitation is not, however, confined to the earth and bodies

near it. Every piece of matter in the universe attracts, and is

attracted by every othr piece of matter in the universe. That

is, gravitation is exerted throughout the material universe,

and if we wish to emphasise this fact we may use the term

universal gravitation, instead of the simpler, general term.

The law of gravitation was first correctly stated by Newton

in the following form :

The force of attraction between two particles of matter

is directly proportional to the product of their masses, and

inversely proportional to the square of the distance between

them.

That is, if two particles of masses m and rti are placed at a

distance d apart, the force of attraction F, exerted mutually

between them, is such that we have

*

7
mm'

or F = Ic .

-jp
,

where k is a constant, known as the constant of gravitation.

The formula F = k
-^ applies primarily to the case of two

particles of matter placed at a distance d apart, for in this case

there is no ambiguity as to the distance denoted by d. It can be

shown, however, that it applies also to the case of two spherical

bodies of masses m and m respectively, placed with their centres

a distance d apart. It will be understood, too, that the formula

may be applied with approximate accuracy in the case of any
two bodies whose dimensions are small compared with their

distance apart.

This law was deduced by Newton from a careful study of the

available data relating to the motion of the heavenly bodies.

These data had previously been studied by Kepler, and systema-
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tised by him into a few general results, known as Kepler's

"Laws." Newton worked on the assumption that the general

law governing the motion of all celestial bodies is the law of

gravitation, and he showed that if the law takes the form given

above, all Kepler's
" laws

"
can be at once deduced from it, and

that the laws stated in this form must, therefore, be in accord-

ance with the data from which Kepler's empirical laws were

derived. The truth of the law is now established beyond doubt.

It has been since Newton's time, the basis of all astronomical

calculations involving the forces acting between bodies moving
in space, and the accuracy of the results obtained show that the

law must be true.

As an illustration of this Newton showed, by calculation from

known data, that the force of attraction exerted by the earth on

the moon in accordance with this law is exactly the force

necessary to keep .the moon moving in its (approximately)

circular orbit round the earth with the velocity it actually

possesses.

Example. Show that the acceleration of the moon moving in its

circular orbit round the earth is the acceleration due to the force of

attraction exerted by the earth on the moon.

The following approximate data will be needed.

Radius of earth, 4,000 miles.

Radius of moon's orbit round the earth is approximately
60 times the radius of the earth.

Time in which the moon makes one complete revolution round

the earth is about 27 days 8 hours.

If the velocity of the moon in its orbit round the earth be denoted

by v, and the radius of the orbit by r, the acceleration of the moon
towards the centre of its orbit that is, towards the earth is given by

-
, as explained in Art. 32.

From the data here given the value of v in feet per second is

2ir x 60 x 4,000 x 5,280

656 x 60 x 60

and the value of r in feet is

60 x 4,000 x 5,280.
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v2
The value of in ft.-per-sec. per sec. is, therefore,

4-n-
2 x 60 x 4,000 x 5,280

(656)
2 x (3,600)

2

or -00897.

That is, the acceleration of the moon in its circular motion round the

earth is '00897 ft.-per-sec. per sec., and is directed towards the earth

at the centre of its circular orbit.

The acceleration of a body at the surface of the earth due to its

weight that is, to the attraction of the earth on it is known to be

32'2 ft.-per-sec. per sec.

The distance of a body from the earth (or from any spherical mass),

is its distance from the centre of the earth, so that the distance of

the moon from the earth is 60 times the distance of a body at the

surface of the earth from the earth. The acceleration of the moon

due to the attraction exerted on it by the earth will, therefore, in

32 '2
accordance with the law of gravitation, be

T^TT?, ft.-per-sec. per sec.,
(oU)~

or '00895 ft. -per-sec. per sec.
,
and is directed towards the earth.

The acceleration of the moon towards the earth, calculated from

the data of its actual motion, is thus the same (within the limits of

the error due to the use of approximate data) as the acceleration to

which it is subject, as the result of the attraction exerted on it by the

earth calculated in accordance with Newton's law of gravitation.

If we consider the relation

mm

which expresses the law of gravitation, it will be seen that the

law implies that the attraction between two particles depends

only on their masses and their distance apart, and is quite

independent of the material of which they are made.

That is, in the formula

F -
Te

mm'

"
~dr '

the gravitation constant k has the same constant value for

matter of all kinds, and is not a specific constant having different

constant values for different materials.
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The truth of this is established by the fact that the accelera-

tion due to gravity is the same for all bodies whatever may be

the material of which they are made. Thus, if M denote the

mass of the earth, m the mass of a small body at the surface of

the earth, and R the radius of the earth, we have

where F is the force of attraction exerted by the earth on the

small body. That is, F is the weight of the small body and is

equal to mg, where g denotes the acceleration due to gravity at the

point where the small body is situated. We may, therefore,

write

Mm

kU
or g .

This result shows that if g is the same for all bodies at the

same place, k must also be the same for all bodies, for
=^

is

necessarily constant.

Newton and other experimenters investigated the constancy

of the acceleration due to gravity for all bodies at the same place

by a series of carefully-conducted experiments with the pendulum.

The period of vibration of a simple pendulum has been proved

to be given by the relation,

IT

where I denotes the length of the pendulum, and g the accelera-

tion due to gravity at the place where the pendulum vibrates.

From this relation we get
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so that if g is the same for bodies of all materials at a given

place, the period of vibration of a simple pendulum of a given

length at that place, should be constant and quite independent
of the material of the bob.

It was found, after varying the material of the bob in many
different ways, that provided the length of the pendulum, or the

length of the equivalent simple pendulum, remained constant,

the period of vibration was constant and quite independent of

the nature of the material or materials which made up the bob.

Experiment 13. Make three simple pendulums of exactly the

same length by attaching small spherical bobs of lead, brass, and

iron, to fine threads about two metres long. Suspend these so that

they can vibrate one in front of the other in parallel planes at right

angles to the plane in which they hang at rest.

Set the three pendulums vibrating in the same phase with the

same amplitude, and note that as long as they continue to vibrate

they keep together in the same phase.
This proves that each of the three pendulums has exactly the same

period of vibration. That is, the period of vibration is independent
of the material of the bob

; and it follows from this that the accelera-

tion due to gravity at any place is independent of the material of the

body subject to the force of gravity, and also that the gravitation
constant is the same for all materials.

The value of the gravitation constant /; can be found from the

relation

mm
HF*

by determining experimentally the value of F for known values

of m, m
f

,
and d.

This determination \vas first made by Henry Cavendish in an

historical experiment, now generally known as the Cavendish

experiment.

The full details of this experiment cannot be given here, but

the general method of the experiment must be briefly indicated.

Two small spheres of lead were attached to the ends of
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a light -wooden lever, and the lever was suspended by a long

fine wire attached at its middle point so that it hung in

a horizontal position. Suspended in this way the lever sets

in a definite position of rest, and if deflected from this position

in a horizontal plane, the suspension wire becomes twisted,

and the moment of the couple due to the torsion on the

wire tends to restore the lever to its position of rest.

Thus, if T denotes the moment of the couple which is able

to twist the wire through unit angle, then the moment of

Fig. 110.

the couple due to the torsion of the wire when the lever is

deflected through an angle a from its position of rest is To in

a direction tending to restore the lever to its initial position.

This lever was suspended under conditions suitable to the

experiment, and means were provided for observing its position

and for measuring accurately any small deflection from that

position.

Let AB in Fig. 110 represent the plan of the suspended

lever carrying the two small balls of lead at A and B. If now

two large spheres or balls of lead are placed at C and D, as
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shown in the figure, with their centres in the same horizontal

plane as the lever, the large balls at C and D will attract the

small balls at A and IJ respectively, and the two forces which

thus act on the lever at A and B will tend to deflect it in

the same direction from its position of rest. These two forces

will in fact constitute a couple which deflects the lever into

a new position of equilibrium at C'D', where the moment of

the couple is balanced by the moment of the opposing couple

due to the torsion on the suspension wire.

In the same way if the large lead balls are removed from

their position at C and D and placed in corresponding positions

at E and F on the other side of the lever, the attractions

exerted by them on the small balls carried by the lever will

deflect the lever into a corresponding position of equilibrium

at E'F.

This was the method adopted by Cavendish. Two large

spheres of lead were prepared and set up on a rotating stand

which was so arranged that the spheres could be placed, relative

to the lever, in the position indicated at C and D or at E and

F, and could be moved from one position to the other by
a simple movement of the stand.

The positions of the lever at C'D' and E'F' were carefully

observed, and the angle, C'OE', between these two positions

was measured as accurately as possible.

If this angle, C'OE', is denoted by 2a, and if the CD and EF

positions of the large spheres are truly symmetrical, relative to

the AB position of the lever, the angle through which the

lever is deflected by the action of the attraction couple in

either of the two positions is denoted by a. Hence, if M
denote the mass of a large sphere, m the mass of a small

sphere, and d the distance between the centres of the spheres

when exerting attraction mutually on each other in a position

of equilibrium at C and C', D and D', E and E', and F and F',

the force of attraction between the spheres will be given by
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F = k =-, where k is the constant of gravitation, and in
d

each case this force will act along the line joining the centres

of the sphere.

The moment of the attraction couple acting on the lever

in either position of equilibrium is given by F/ or Id
p-,

where / denotes the length of the arm of the couple.

This moment must, however, be equal to the moment of the

opposing couple due to the torsion of the wire, and as the

twist on the wire is denoted by a when the lever is in either

position of equilibrium the moment of this torsion couple will

be Ta, where T denotes, as explained above, the moment of the

couple able to twist the wire through unit angle.

We must, therefore, have

Mm
w- =

or k -^fj . a.
Mml

The value of k can thus be determined, for the values of T,

M, m, /, d, and a can all be found experimentally. The value

of T is most conveniently found by determining the time of

vibration of the lever about its position of rest. It can be

shown that if I denote the moment of inertia of the lever

and balls round the suspension wire as axis, the time of

/"T" A 2j

vibration is given by t = STT^^ or T =
2

.

The value found for k by Cavendish was about 6 '5 6 x 10~ 8 in

C.G.S. units.

A number of determinations of this constant have been

made since the time of Cavendish by different experi-

menters in England and in other countries. In England a

determination was made by Poynting by a method in which
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the ordinary balance was used instead of the torsion balance

used by Cavendish. The value of k given by this method

in one series of experiments was 6 '6 6 x 10~ 8 in C.G.S. units.

A later determination was made in 1894 by Boys, who adopted

the original torsion balance method, but used a very fine

quartz fibre instead of a fine metal wire for the suspension

of the lever. The value given by Boys for the constant is

6-6576 X 10- 8 in C.G.S. units.

It will be seen that if the value of k is known it is at

once possible to calculate the mass and the mean density of

the earth. Thus, if m denote the mass of any small body
at the surface of the earth at a place where g is the true

acceleration due to gravity, M the mass of the earth, and R its-

radius, we have,*

JM
9 = R'

or M = l

,

and M can be calculated from this relation for g and R are

known.

When M and R are known the mean density of the earth can

be found, for we evidently have

D = _M_

3M
or D =

47TR3
'

where D denotes the mean or average density of the earth.

If we take 6 '65 7 6 X 10~ 8
, given by Professor Boys, as the

value of k, the value obtained for the mean density of the

earth is 5'527 grammes per cubic centimetre.

95. Elasticity. Elasticity is a property of matter, in virtue

of which a body is able to resist change of size or change
* The form of the earth is assumed to be truly spherical.
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of shape, and in virtue of which it tends, while resisting the

change, to recover its original size or shape, and is able,

when the force causing the change is removed, to recover

completely its original size or shape, provided the change has

not exceeded certain small limits which differ for different

materials.

A body is thus said to offer elastic resistance to change

of size or change of shape when the stress set up in the

material by the change not only opposes the change, but at the

same time tends to restore the displaced particles of the body to

their original positions. Thus, if a soft ball of clay is squeezed

flat between the finger and thumb the resistance it offers to the

change of shape is not elastic resistance, for although the

friction between the particles of clay opposes the displacement of

one particle relative to another, it does not at any stage in

the process tend to restore the displaced particles to their

original positions. The resistance in this case is frictional

in character, and resembles the resistance offered by a viscous

liquid to change of shape, as explained below.

In general a body is able to offer elastic resistance to change

of size or change of form, only within certain narrow limits

of change. These limits for any material are called the limits of

electricity for that material, and are found to differ considerably

for different materials.

The substances of highest elasticity are those which, like steel,

glass, ivory, and most liquids, offer very great resistance to

change of size or change of shape. Certain substances, such as

indiarubber, are commonly called elastic substances, because

the limits of elasticity for these substance are unusually wide.

A piece of indiarubber, for example, offers elastic resistance

to change of size and shape through a very wide range of

change, and is able to recover its original size and shape after

undergoing very large changes of this kind.

A solid substance is able to offer elastic resistance to change
17
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of size, and also to change of shape. That is, a solid substance

possesses elasticity of bulk or elasticity of volume, as well as

elasticity of shape orform.

A liquid substance, on the other hand, is able to offer elastic

resistance only to change of size, and offers no elastic resistance

whatever to change of shape. That is, a liquid possesses only

elasticity of volume, and is devoid of elasticity of form. This,

in fact, constitutes the essential difference between a solid and a

liquid : a solid possesses elasticity of form in a verv marked

degree, but a liquid has no trace of this property.

A gas like a liquid has elasticity of volume, but no elasticity

of form.

When force is applied to a body in order to produce change

of volume or change of form, it is generally assumed to be

applied as a pressure or a tension exerted uniformly over the

whole surface of the body, or over a portion of the surface,

and is supposed to act either normally or tangentially to this

surface. The force applied is, therefore, generally measured as

the force per unit of area, and when so measured is known as

the stress to which the change it produces is due.

The change of size produced in any body by a suitable stress

is not measured by the actual change of volume produced, but

by the ratio of this change to the initial volume. Similarly, change

of shape is measured, as explained below in Art. 98, by the ratio

of a linear displacement to a length definitely associated with

the displacement.

Change of size or change of shape, measured in this way as a

ratio or a proportional change, is called a strain, and any body
in which a change of this kind is produced is said to be

strained.

When a body is strained within the limits of elasticity for the

material of which it is made, it is found by experiment that the

strain produced is directly proportional to the stress applied,

That is, for small strains within the elastic limits of the
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material considered,

stress .

the ratio . s~ is constant.
strain

This constant ratio for any material is the modulus of elasticity

for the particular case of stress and strain to which it applies.

96. Density and Specific Gravity. The mass of any

volume of a given uniform material* is obviously proportional

to the volume. Thus, the mass of n cub. cms. of pure water at

C is n times the mass of 1 cub. cm. of pure water at the same

temperature.

It follows from this that the mass per unit volume for any

definitely specified material is constant for that material.

Further, if the mass per unit volume for different materials

is compared it is found that, although it is constant for a given

material, it differs widely for different materials. Thus, the

mass of 1 cub. cm. of gold is about 19*3 grammes, the mass of

1 cub. cm. of silver is about 10'5 grammes, the mass of

1 cub. cm. of copper is about 8'9 grammes ;
while the mass of

1 cub. cm. of pure water at 4 C. is almost exactly 1 gramme.
The mass per unit volume of any substance is thus a

characteristic or specific constant of the substance, and is called

the density of the substance.

Hence, if the mass of a body of any uniform material is

denoted by m, and its volume by v, the density, d, of the

material is given by the relation

m
a =

v

This formula may be written in the form, m = cd^ and

establishes a very important relation between mass, volume, and

density, for any uniform material.

When a body is not of uniform material throughout, its

* The material is here supposed to be uniform with regard to the

distribution of its mass throughout its volume.
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density is not uniform, but varies from point to point, and

is measured at any point by the mass per unit volume for

a very small volume yf the material taken at that point. This

case need not, however, be further considered.

It will be seen from what has been said that the experimental

determination of the density of any material involves the

measurement of the mass and volume of a selected portion

of the material. Thus, to find the density of silver by a direct

experimental method it would be necessary to take a suitable

piece of silver, and to find its mass by weighing it, and its

volume by measuring it. Then, if m and v denote respectively

the mass and volume thus determined, the density of silver

could be calculated from the relation

md=
v

It is explained below, however, that although this direct

method may be adopted, and is adopted in the case of gases, it

does not give such accurate results as the indirect methods,

dealt with in Chap. xix. The inaccuracy of the method depends

upon the fact that, although the mass of a body can be

determined by weighing with the highest accuracy, the volume

of a body cannot be determined by direct measurement with

anything like the same degree of accuracy.

Density, as defined above, is sometimes called absolute density,

Instead of expressing the density of a substance absolutely,

as explained above, it may evidently be expressed relatively with

reference to the density of some well-defined substance as

a standard. The density of a substance, expressed relatively to

the density of a specified standard substance, is called the relative

density of the substance. The standard substance selected for

reference is pure water at 4 C.

It will be seen that the relative density of a substance is thus

the ratio of the density of the substance to the density of water

at 4 C., and is merely a number expressed without units.
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Thus, the absolute density of gold is 19'3 grammes per

cub. cm., and the absolute density of water at 4 C. is 1 gramme

per cub. cm., so that the relative density of gold is 19'3.

It is one of the advantages of the C.Gr.S. system that the

relative density of 'a substance is expressed by the number

which measures its absolute density. This is not the case

in the English system. For example, the absolute density of

gold in English units is about 1207 pounds per cubic foot, and

the absolute density of water is about 62*5 pounds per cubic

1207
foot, so that the relative density of gold is - or 19*3. It is

to 2i 'D

important, however, to note that the relative density of a

material must be the same in all systems of units.

The specific gravity of a substance is essentially the same at

its relative density, and may be defined as the ratio of the

weight of any volume of the substance to the weight of the

same volume of water at 4 C.

Thus, if W denote the weight of any volume of a given

substance, and W the weight of the same volume of water at

4 C., then

W'
w =:

S)

where s denotes the specific gravity of the substance. It will

be seen here that if V denote the volume of the substance, d' its

density, and d the density of water at 4 C., we have W = Vd',

and W = Vd, so that

w/ = Yi' _ &
W ==

Vd
~

d'

That is, s =
,
or the specific gravity, s, of any substance is

a

essentially the ratio of the density of any substance to the

density of water at 4 C., and is, therefore, the same as the

relative density of the substance.
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The relative densities or specific gravities of a few of the

commoner substances are given in the following table.

Table of Relative Densities OP Specific Gravities.

Solid-1

*.

Aluminium,
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The density of gases is considered in Art. 126. The absolute

density of dry air at C., and under normal atmospheric

pressure, is T293 grammes per litre, or '001293 gramme per

cubic centimetre.

The density of a substance generally decreases as the tempera'

ture rises,* for as the substance expands with rise of temperature,

the volume occupied by any given mass must necessarily increase,

and the density must, therefore, decrease.

The variation of density with change of temperature has

been very carefully studied f experimentally for water and

mercury. A short tabular statement of the results obtained for

temperatures within the ordinary range is given below.

Water.

The absolute density of pure water free from air, and under

normal pressure at 4 C., is found to be '999955 gramme per

cubic centimetre.

Specific Gravity of Water at Different Temperatures Relative

to Water at Jf C.

Temperature.
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Density of mercury at different temperatures calculated from

Regnaulfs value of the coefficient of cubical expansion of mercury.

Temperature.
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CHAPTER XVII.

PROPERTIES OF SOLIDS.

97. Volume Elasticity. When a body is strained in such a

way that it undergoes change of volume without change of shape,

the elasticity which enables it to resist the change is known as

volume elasticity or bulk elasticity.

A body can be strained in this way only by subjecting the

body to a uniform pressure acting normally all over its surface,

and then increasing or decreasing this pressure according as it is

required to increase or decrease the volume of the body.

Pressure may conveniently be applied in this way by immersing
the body in a suitable liquid and then applying pressure to the

liquid. The pressure on the liquid is exerted on the surface of

the immersed body, and acts everywhere at right angles to the

surface. The piezometer apparatus, described in Art. 116, has been

used for applying pressure to solid bodies in this way. It is,

however, difficult to obtain in any way reliable measurements

of the compressibility of a solid : most solids offer very great

resistance to compression, so that the changes of volume, even

under very great changes of pressure, are very small, and in any

piezometer method they are subject to correction for the

compression of the liquid used.

By using a compressible substance, such as cork, the meaning
of change of volume, without change of shape, may be illustrated

in a striking manner by means of the piezometer apparatus. If

a ball of cork of uniform structure is subjected to pressure,

it may be compressed to a ball of much smaller volume
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without losing its spherical form, and when the pressure is

removed it recovers its original volume, retaining its spherical

form throughout the process.

A body may be subjected to very great hydrostatic pressure

by sinking it to a great depth in the sea. A piece of cork may
in this way be made so dense by compression that it sinks.

Let a body occupy a volume V when subjected to a uniform

pressure of P units per unit area, and let the volume be decreased

to (Y v), without change of form, when the pressure is

increased to (P + p) units per unit of area.

The stress to which the change of volume in this case is due

is measured by p, and the volume strain produced is given

by the ratio
^-

The modulus of volume elasticity, usually

denoted by k, is given therefore by

As explained above, it is very difficult to measure v in this

relation with any accurracy, so that the value of h cannot be

determined accurately by any direct experimental method. It

can, however, be determined indirectly, as explained below.

98. Simple Rigidity. The elasticity which enables a solid

body to resist change of shape or form, without change of

volume, is known as form elasticity, or, more generally, as

simple rigidity.

The fundamental strain in any change of shape without

change of volume is the displacement in its own plane of any

very thin plane layer of the material, relative to an adjacent

parallel layer. Thus, if the thin plane layer AB, in Fig. Ill,

is displaced in its own plane through a distance AA' or BB',

relative to the adjacent parallel layer CD, the material made up
of the two layers is subject to a simple form strain, without

attendant change of volume, and the strain is measured by the
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ratio of the displacement, AA', to AC, the perpendicular distance

between the layers.

Similarly, if a plane layer AB, Fig. 112, is displaced in its

own plane (through a distance d) relative to a plane parallel

layer CD, at a perpendicular distance D from it, the material

between the layers is subject to simple change of form without

change of volume, and the form strain thus produced is measured

d
by the ratio

This form of strain is known as a shearing strain, or a simple

shear. The forces by which this strain is produced must

evidently be applied tangentially over the surfaces of the plane

layers AB and CD, and must act on these layers in opposite

A (d)A' 3 B'

(D)

A' B B'

C * D

Fig. 111. Fig. 112.

directions in the line of displacement. The force per unit area

thus applied to either surface is taken as the measure of the

applied stress, and the ratio of this stress to the strain d/D is

called the modulus of simple rigidity for the material under

strain. This modulus is usually denoted by n, so that if P

denote the tangential stress and s the shearing strain then

It can easily be seen that a shearing strain involves no

change of volume. Thus, if a rectangular block of any material

be sheared by the relative displacement of any two parallel

faces, the volume of the block must remain unchanged ; for, if



268 GENERAL PHYSICS.

we consider the block made up, like a pack of cards glued

together, of a very large number of thin layers parallel to

the two faces considered, any one layer is simply displaced

slightly in its own plane, relative to the adjacent layers, and

the length, breadth, and depth of the block must remain

unchanged.

A block of any material might conceivably be sheared by

applying to any two parallel faces uniform stresses acting in

opposite directions and parallel to the surface in each case.

Thus, in Fig. 113, if we suppose the block ABCD to have

its upper and lower faces glued to the planes PQ and RS,

the block could be sheared by applying equal forces to displace

the planes PQ and RS, each in its own plane, in opposite

directions, as indicated by the

p ^ Q arrows in the figure.

It can be shown, however,

that when a cylinder is sub-

jected to twist or torsion round

5 its axis, the strain in any thin

Fig. 113. cylindrical shell is really a

shearing strain which increases

as the radius of the shell increases. Thus, let ABCD, in

Fig. 114, represent a cylinder, and suppose the upper face of

this cylinder to remain fixed, while the lower face is twisted

through a small angle a relative to the upper face in the

direction of the arrow.

If we consider the effect of this twist on the outermost

shell of the cylinder, it will be seen that any strip of the

shell, such as abed, taken parallel to the axis before twisting,

is displaced by the twist into the position abed/ That is,

the strip is subjected to a simple shear, and the shearing

strain produced in it measured by the ratio - From this
ac

result it will be seen that the shearing strain in any cylindrical
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shell of radius x, when the lower face of the cylinder is twisted

in its own plane through an angle a relative to the upper face,

is measured by the ratioy ,
where I denotes the length of the

cylinder. Since

stress = n,
strain

nxa
it follows in this case that, stress = n . strain =

j-.
That is, the

I

c d

Fig. 1.14

stress or force per unit area applied to the lower face of the shell

of radius x in order to twist it through an angle a relative

nxn
to the upper face is = , where / is the length of the cylinder.

This force is applied uniformly over the surface and acts every-

where parallel to the surface and tangential to the section
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of the shell, so that if S denote the thickness, radially, of this

shell, the moment of the force causing the torsion of the shell is

<* nxa lTrny?$*
27rxc . i . x, or ----

. in the same way the moment ot the
I v

force causing the torsion in every one of the thin cylindrical

shells, into which the cylinder may be supposed to be divided, can

be determined, and by taking the sum of the moments for all

the shells we can get the value of the moment of the couple

which produces the torsion of the cylinder as a whole.

It can be shown in this way, by summing the moments

for all the shells by a suitable mathematical method, that the

moment of the couple which will twist one end of a cylinder of

length I and radius r through an angle a. relative to the other

end, is
-^y a, where n is the simple rigidity of the material

of the cylinder. It follows from this result that the moment

of the couple which will twist the cylinder through unit angle

(circular measure) is given by

_
21

This moment is sometimes called the modulus of torsion for

the particular cylinder (usually a rod or wire) to which it applies.

This result at once suggests a method of determining n, the

modulus of simple ragidity, experimentally, for any material

which can be drawn into a wire or thread of truly circular

section.

A heavy bob, in the form of a metal sphere or cylinder,

is attached to one end of a convenient length of fine wire made

of the material for which the modulus of simple rigidity is

to be determined and then suspended, as shown in Fig. 115,

by fixing the other end of the wire in a suitable clamp. If the

bob used is cylindrical in form it is best to attach it to the

wire, so that it hangs (as shown in the figure) with its axis
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in the same vertical line as the axis of the wire. The arrange-

ment thus set up is called a torsion pendulum, and may evidently

be set in vibration under the influence of the torsion of the wire

by twisting the bob round its axis through any convenient

angle, and then letting it go.

If the vibrations of a torsion pendulum are studied experi-

mentally, it will be found that the period of vibration is per-

fectly constant, and quite independent of the angular amplitude

of the vibrations, whether this amplitude be large or small.*

Experiment 14. Set up a torsion pendulum similar

to that shown in Fig. 115. Attach a very light wire

pointer horizontally to the lower end of the bob, and

arrange a circular scale immediately below, so that the

pointer indicates the zero of the scale when the bob

is at rest.

Now determine the period of vibration under torsion

for different amplitudes. The amplitude may be

varied from two or three complete revolutions down
to a few degrees. The period should be found by

determining the time occupied by a sufficient number

(as many as possible) of complete vibrations within a

certain range of amplitude. The complete vibrations

should be counted, as in Experiment 3, as the intervals

between successive transits of the bob in the same

direction through its zero position. This position is
p. j^

easily observed by means of the pointer and scale.

It will be found that the period is quite constant for all amplitudes.

The period of vibration of a torsion pendulum can thus be

easily and accurately determined by experiment.

It can be shown, however, that the period of vibration of the

pendulum is given by

where T is the modulus of torsion of the wire and I the

* This result shows, incidentally, that the moment of the couple due to

the torsion of the wire is directly proportional to the angle of the twist.

This is in accordance with the theoretical result obtained above.
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moment of inertia of the vibrating system round the axis of

rotation.

From this relation we get

T =^
That is,

A A OT
irnr* ^TT^L

_ SirU

where ? and I denote respectively the radius and length of the

wire, and n the modulus of simple rigidity for the material of

the wire.

Now, in any experiment, such as that described above, the

quantities t, r, and / can be measured directly, and I can be

calculated from mass, dimensions, and form of the bob and

wire. The value of n for the material of the wire can thus

be determined with considerable accuracy by direct experiment.

99. Stretching
1

, When a wire or rod is stretched by
a tension in the direction of its length the strain produced

is not a pure volume strain or a pure form strain, but involves

a change both of volume and of form. The elastic resistance

which a material offers to stretching involves, therefore, both

the volume elasticity and the simple rigidity of the material.

It can readily be shown that stretching a rod produces a true

change of form in the material of the rod. When any portion

of the rod is stretched its length increases, but the dimensions

at right angles to the length decrease. Hence, if we consider

a spherical portion of the material of the unstretched rod,

taken in the interior of the rod as at A in Fig. 116, it will

be seen that this spherical portion must, in the stretched

rod, take the ellipsoidal form indicated at B in the figure.
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Stretching is thus accompanied by true change of form. It

is accompanied also by change of volume for experiment shows,

as explained below, that a rod or wire when stretched increases

in volume.

When a wire of length L is elongated by stretching by an

amount /, the elongation of each unit length of the wire is

obviously the same, and is measured by the ratio =-. This
Lt

ratio which may be defined as the elongation per unit length,

or the ratio of the total elongation to the initial length of

the wire, is taken as the strain due to stretching.

Also, if W denote the stretching

force or tension applied to the wire

in stretching it, and a denote the

area of cross section of the wire, the

stress to which the stretching is due

W
is evidently given by for the

B

Fig. 116.

tension is necessarily distributed

uniformly over the cross section.

Experiment shows that for all

stretching strains within the limits

of elasticity of the material, the ratio

of stress to strain, where each is measured as explained above,

is constant. This ratio may, therefore, be considered as the

modulus of elasticity for stretching, and is known as Young's

modulus of stretching, or simply as Young's modulus. Hence,

if Young's modulus for the material of the wire considered

above is denoted by M, we have

W

/ al

L

The value of M for the material of any wire or rod can

18
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thus be determined experimentally by stretching the wire under

such conditions that W, L, a, and I can be accurately measured,

and then calculating out the value from the relation given above.

A convenient form of apparatus for carrying

out a determination of Young's modulus by this

method is shown in Fig. 117.

The wire to be stretched is suspended, as

shown at A in Fig. 117, from a vice clamp
CC in which its upper end is fixed, and carries

at its lower end a vernier V and a scale pan P,

as shown in the figure. The free length of the

wire for stretching should be about 2 metres,

and the stretching force should be applied

gradually by placing weights in the scale pan.

In most cases it is convenient to use a bucket

as a scale pan, and to apply the stretching

weight by pouring measured quantities of

water slowly into the bucket.

The scale, SS, on which the elongation is

measured is carried from the suspension clamp

by the two side wires shown in the figure, and

is held in a fixed position relative to the vernier

by means of the heavy tubular weight of lead

shown at LL. When weights are placed in

the pan so as to stretch the wire, the vernier

V is pulled downwards in the groove in which

it moves freely relative to the scale, and the

difference in the vernier readings before and

after the addition of any weight gives the

F
-

jjy elongation due to that weight. The elongation

produced by any weight can thus be measured

with considerable accuracy by using a good scale and an

accurately divided vernier reading to a small fraction of a

scale division.
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The initial length of the wire, between the clamp and the

vernier, can be measured with sufficient accuracy by direct

application of a metre scale; and the area of cross section

can be found by taking a number of careful measurements

of the diameter with a screw gauge, and then calculating the

area from the mean value of the diameter.

The stretching weight to which the measured elongation is

due is given by the weights placed in the scale pan. All

the data necessary for the determination of Young's modulus

from the relation,

M = WL
al

'

can thus be found by direct experiment.

Example. In an experiment for determining Young's modulus

for copper by stretching a copper wire, the following data were

obtained :

Initial length of wire, 206 '2 cms.

Mean diameter of wire, '0914 cm.

Load on Wire.

(In addition to starting load

necessary to straighten wire.)
Kilogramme -weights.
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from these data we have

W = 1 kilogramme-weight
= 1,000 x 981 dynes.

a = -00657 sq. cm.

I = -0315 cm.

L = 206 "2 cms.

We, therefore, have

1,000 x 981 x 206-2

00657 x -0315

= 9-77 x 10U dynes per sq. cm.

That is, Young's modulus for copper is given by this experiment as

9'77 x 10U in dynes per square centimetre.

The behaviour of a wire when stretched beyond the limits of

elasticity for the material illustrates the general behaviour of a

material when strained in any way beyond the limits of perfect

recovery from the strain.

The data obtained by stretching a wire beyond the elastic

limit serve also to determine the breaking stress at which the

wire breaks under tension. This breaking stress is taken

as a measure of the tenacity or tensile strength of the material

of the wire.

The breaking stress for a thin wire may be determined experi-

mentally by an extension of the method, described above, for

the determination of Young's modulus. The apparatus shown

in Fig. 117 may be used, but a very long scale suitable for

measuring considerable elongations should be used. The wire

is stretched by gradually increasing the load in the scale pan,

but when the elastic limit is reached the increments of load must

be made smaller and smaller, and must be added very gradually

preferably by pouring water or shot into a bucket used as a

scale pan. This process of gradual stretching is continued until
j

the wire breaks.

If the data obtained in such an experiment are examined it

will be found that the elongation produced by a given increment
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of load is practically constant up to the load at which the elastic

limit for stretching is reached. Beyond this limit, however, the

elongation for a given increment of load steadily increases until

a point known as the yield point of the material is reached. At

this point the wire "
yields

"
or

"
gives

"
under the applied load,

and a considerable permanent elongation is produced without

any further addition to the load being made. Beyond this point

a stage is reached in which the load must again be increased in

order to obtain further elongation, and in this stage, as in that

immediately preceding the yield point, the elongation for a given

increment of load rapidly increases until ultimately the breaking

point of the wire is reached. During this stage the material of

the wire appears to be in a more or less plastic condition, for it

is found that the elongation due to a given increment of load

increases with the time for which the load is applied. It is

found, too, that as the breaking point is approached the wire is

drawn out more at some points than others, and its cross section

ceases to be of uniform area.

If a curve is plotted showing how the elongation of the

wire increases w7ith the stretching stress, it will have the

form shown in Fig. 118. The straight portion OA of the

curve shown in the figure represents the relation between

the elongation and the stress within the limits of elasticity

where the elongation is directly proportional to the stress.

At the point A, where the continuation of the straight portion

OA leaves the experimental curve, the elastic limit is reached,

and the limiting stress at which this takes place is represented

by OP.

The portion AB represents the relation between the elongation

and the stress between the elastic limit at A and the yield point

at B, and it can be seen from the form of the curve that in this

portion of it, the elongation due to any given increment of load,

rapidly increases as the load increases, until the point B is

reached, where a considerable elongation takes place under the
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constant load represented by OQ. The portion BC represents

the relation between the elongation and the stress between

the yield point at B*and the breaking point at C, and in this

portion, too, it will be seen that the elongation increases very

rapidly with the load until the breaking point is reached.

The stretching stress corresponding to this breaking point,

represented in the figure by OK, is the breaking stress for

the material of the wire. It must be noted, however, that

the breaking of the wire is often due to some small flaw in

P q
Stretching Stress

Fig. 118.

the wire, and may, therefore, take place with the same wire

under widely different stresses. It is necessary, therefore,

in determining the breaking stress to eliminate accidental

breakages, and to find the maximum constant stress at which

breakage takes place.

It will readily be understood that the whole process of

stretching a wire, as represented by the curve OABC in Fig. 118,

can be followed out experimentally only when the material of

the wire is of a very ductile and tenacious character. In the case

of brittle material the stages represented by the portion ABC of
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the curve are practically non-existent, and the breaking point is

reached very quickly after the elastic limit is passed.

Experiment 15. Find the breaking stress for soft iron by the

method indicated above. Use about a metre length of No. 22 wire.

A serious difficulty which presents itself in all experiments

dealing with strains beyond the limits of electricity for the

strained material, is the effect of time on the strain due to

any given stress. In an experiment, such as that described

above, it is found, even before the yield point is reached, that

the elongation produced by any load beyond the elastic limit is

not constant, but increases slightly with the time for which the

load is allowed to act.

The experimental laws of stretching may be expressed concisely

by saying that, within the limits of elasticity the stretching

stress and the stretching strain, as defined above, are directly

proportional the one to the other. They may be expressed

more formally from the relation

M WLM = =-

al

which gives

= JL wk
~
M' a

'

That is, the elongation of a wire of given material due to

stretching within the limits of elasticity for the material, is

directly proportional to the stretching force, directly proportional

to the initial length of the wire, and inversely proportional to

the area of cross section.

It should be noted that compression in one direction is

essentially the same strain as stetching in one direction.

That is, whether a rod is stretched or compressed in the

direction of its length the modulus of elasticity involved in

either case is Young's modulus of stretching.
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Young's modulus is, like the modulus of simple rigidity,

a very important elastic constant for any material. These

two moduli are the moduli which can be determined most

accurately by direct experiment, and as other moduli of elasticity,

such as the modulus of volume elasticity, can be derived from

them theoretically, they serve to determine indirectly the values of

these moduli.

100. Bending". When a rod or beam is bent in any way, as

shown in Fig. 119, the layers on the convex side are obviously

stretched, while those on the concave side are compressed in the

direction of their length. A certain neutral layer, indicated in

outline in the figure, is neither stretched nor compressed, but

all layers on the concave side of this layer are compressed,

and all on the convex side are stretched.

Fig. 119.

The modulus of elasticity involved in bending is, therefore,

Young's modulus of stretching, and this modulus may be

determined experimentally by data derived from the bending of

a beam.

The theory of bending strains is too complicated to consider

here, but the experimental laws of bending for light beams of

rectangular section loaded at one point, may be established by a

few simple and interesting experiments, such as those indicated

below. For the purpose of these experiments a beam may be

bent by fixing it securely in a horizontal position with one end

firmly clamped and the other end free, and then applying a

weight at the free end, as in Fig. 120, or by supporting it in a

horizontal position on two knife-edges, placed one under eacli

end, and then applying the weight at a point midway between

the supporting edges as shown in Fig. 121. In either case the
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bending is conveniently measured by the downward deflection of

the point at which the weight is applied.

The bending deflection produced in a light beam of rect-

angular section of given material when loaded at a particular

point, must evidently depend upon (i)
the load applied ; (ii) the

length of the beam
; (iii) the width of the beam

;
and (iv) the

depth or thickness of the beam. It is necessary, therefore, to

find by experiment how the deflection depends upon each of

these four factors separately when the other three are kept
-constant.

Experiment 16. Find how the bending deflection of a light beam
loaded at its middle point depends upon the load to which the

bending is due.

Set up a light wooden beam about a metre long and about 2 cms.
x 1 cm. in cross-section, in the manner indicated in Fig. 121, and

Fig. 120. Fig. 121.

arrange a scale and pointer to measure as accurately as possible the

downward deflection of the middle point of the beam.

Measure carefully the deflections produced by a series of gradually

increasing loads, taking care not to pass the elastic limit for the

beam, and then arrange the results in a tabular form similar to that

given in the Example in Art. 99 above.

It will be found that the bending deflection is directly proportional

to the load, and that the average deflection per unit load is, there-

fore, constant for all loads within the elastic limit.

Note that in this experiment the load only is varied.

Experiment 17. Find how the bending deflection of a light beam
loaded at its middle point depends upon the length of the beam.

Set up a wooden beam as in the foregoing experiment, and find the

deflections produced by the same load for different lengths of the same

beam. The length of the beam subjected to bending is very easily

varied by simply varying the distance between the knife-edges which

support the beam.
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It will be found, on tabulating and reducing the results obtained,

that the bending deflection is directly proportional to the cube of the

length.

Note that in this experiment the length of the beam only is changed.

Experiment 18. Find how the bending deflection of a light

beam loaded at its middle point depends upon the width of the beam.

Obtain a number of beams cut from the same piece of wood of the

same length and thickness, but of different widths. Set up each beam
in turn, as in the foregoing experiments, and measure the deflection

produced by the same load for the same length of beam in each case.

It will be found on tabulating and reducing the results that the

bending deflection is inversely proportional to the width of the

beam.

This result might have been deduced on first principles without

appealing to experiment.

Noj:e that in this experiment the width only is varied.

Experiment 19. Find how the bending of a light beam loaded at

the middle point depends upon the depth of the beam.

Obtain a number of beams which differ in depth, but which are

exactly alike in material, length, and width. For this experiment
the beams must be accurately made of very uniform material, and the

depth should vary within comparatively narrow limits. Five beams,

varying in depth from 8 mm. to 10 mm., in steps of half a millimetre,

would answer the purpose.

Set up each beam in turn, and find the deflection of the same length
under the same load.

It will be found, on tabulating and reducing the results, that the

bending deflection is inversely proportional to the cube of the depth
or thickness of the beam.

Note that in this experiment the depth only is varied.

If the foregoing experiments are repeated for a beam loaded at one

end, as in Fig. 120, exactly similar results will be obtained.

It will be seen from the results of these experiments that the

experimental laws of bending for a light beam of rectangular

section loaded at its middle-point or at one end may be stated

as follows :

The deflection of the point at which the load is applied

is directly proportional to the load, directly proportional to the
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cube of the length, inversely proportional to the width, and

inversely proportional to the cube of the depth or thickness

of the beam. That is, if I denote the deflection, W the load, L
the length, a the width, and b the depth of the beam, we have

WL3

Ufl'

WL3

or I = K
ab3

where K is a constant.

The value of this constant depends upon the value of Young's
modulus for the material of the beam. It can be shown that its

4 i
value is when the beam is loaded at the middle, and M
when the beam is loaded at one end.

The value of Young's modulus for the material of a beam can

thus be determined from the relation given above. In the case

of a beam loaded at the middle, for example, we have

4 WL3

/ = >M ab3

4WL3

or M = - *

Hence, if in any experiments, such as those outlined above,

the values of W, L, a, b, and / are carefully and accurately

measured, the value of M can be at once obtained by means

of this formula.

Experiment 20. Find Young's modulus for glass by the method

of bending. Use a fairly long strip of plate glass, of uniform width.

The bending deflection may conveniently be measured by a sphero-

meter or screw gauge suitably arranged for the purpose.

101. Torsion. The theory of torsion in the case of a

cylindrical rod or wire has already been considered in Art. 98,

as far as it can be dealt with here.
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It has been shown that a twisting strain is essentially a

shearing strain, and that the modulus of elasticity involved

in torsion is, therefore, trtie modulus of simple rigidity.

The laws of torsion for a uniform cylindrical rod are expressed

concisely by the relation, T = -> given in Art. 98. They may,

Fig. 122.

however, be established experimentally in a simple manner by
means of the apparatus shown in Fig. 122. A long cylindrical

rod is mounted in a horizontal position, so that one end

is rigidly fixed in a socket, while the other end is free

for twisting, and carries a wheel or pulley by means of

which a twisting couple can be applied. This couple is applied
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by hanging a weight from the rim of the wheel. The cord

carrying the weight is attached at one end to a point on

the rim, and is then coiled once or twice round the grooved rim,

so that the free end to which the weight is attached hangs

vertically downwards at one side of the wheel. The weight

thus acts vertically downwards, in all the positions of the wheel,

at the extremity of a horizontal radius, and the moment of the

twisting couple thus applied to the rod is, therefore, measured

by the product of the weight into the radius of the wheel.

The angle of twist produced in any length of the rod by

a given twisting moment is measured by means of the movable

pointer and the circular scale shown in the figure. This pointer

and scale can be set up at any distance from the fixed end of the

rod, and the twist produced in this length of the rod is indicated

directly by the deflection of the pointer on the scale.

It should be noted that the moment of the couple which

produces torsion in a rod, or the moment of the couple which a

rod is able to exert in virtue of torsion imposed on it, is usually

called the torque applied to, or exerted by, the rod.

The following experiments indicate, in a general way, how

this piece of apparatus may be used to determine the experi-

mental laws of torsion for a cylindrical rod.

The angle of twist produced in a circular rod of given

material must evidently depend upon (i) the torque applied,

(ii) the length of the rod, and (ill) the radius of the rod. It is

necessary, therefore, to find by experiment how the twist

depends upon each of these three factors separately when the

other two are constant.

Experiment 21. Find how the twist produced in a given rod

varies with the torque applied to the rod.

Set up the pointer and scale at a point on the rod near the free end,

and measure carefully the angle of twist produced by a number of

different torques. The torque should be varied by gradually increas-

ing the weight carried by the torque wheel, and care should be taken

not to exceed the limit of perfect recovery for the rod.
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It will be found, on tabulating and reducing results, that the twist

produced is directly proportional to the torque applied.

Experiment 22. Find how the twist produced depends upon the

length of the rod.

Apply a convenient fixed torque to the rod. Then measure the

twist produced by this torque in different lengths of the rod by
setting up the pointer and scale at different distances from the fixed

end of the rod.

It will be found, on tabulating and reducing the results, that

the twist produced by a given torque is directly proportional to

the length twisted.

It should be noted that this means that the twist per unit length

in a twisted rod is constant for a given torque.

Experiment 23. Find how the twist produced depends upon the

radius (or diameter) of the rod.

For this experiment it is necessary to obtain a number of rods

of exactly the same material but of different diameters, or to turn the

same rod down so as to obtain from it in succession rods of smaller

and smaller diameter.

The diameters of the rods should vary within comparatively narrow

limits an extreme ratio of 4 : 5 or 5 : 6 is small enough and should

be measured with the greatest possible accuracy by means of a good
screw gauge. Measure the twist produced for the same length by the

same torque for each rod in turn.

It will be found, on tabulating and reducing the results, that the

twist produced is inversely proportional to the fourth power of the

radius of the rod.

It follows from the results of these experiments that the twist

produced in a cylindrical rod of given material is (i) directly

proportional to the torque applied, (ii) directly proportional to

the length of the rod, and (iii) inversely proportional to the

fourth power of the radius (or diameter) of the rod.

These may be taken as the experimental laws of torsion

for a cylindrical rod of given uniform material.

Hence, if Q denote the torque applied to a cylindrical rod

of length / and radius r, and denote the twist produced in



PROPERTIES OF SOLIDS. 287

the rod, we may write

'-

e = K-Jr4

where K is a constant.

The value of this constant depends upon the material of the

rod, and also upon the fact that the rod is of circular cross

section.

If this relation is written in the form

it will be seen that the torque, which will produce unit angular

twist, is given by

Q = r*

Kl

But -~ is the quantity denoted by T in the relation,

as explained in Art. 98. It follows, therefore, that

r4 7T7W4

TQ
"

2J
'

o

or K = -

7T/1

Experiment 24. Set up the apparatus shown in Fig. 122, and

measure for a given rod the value of 6 for a measured torque

Q. Then measure I and r for the rod, and calculate from the

KQZ
relation, B =

-J-,
the value of K for the rod. Then from the

2
relation, K =

,
find the value of n, the modulus of simple rigidity

for the material of the rod.
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The laws of torsion may be established experimentally by
experiments with wires if the apparatus shown in Fig. 123
is used. The method* of applying torque to the wire is plainly
indicated in the figure.

It is frequently necessary in engineering practice to measure

the torque transmitted by a cylindrical shaft. It will be seen,

from what has been said above, that this can be done for a shaft

of given material and diameter, by simply

measuring the twist on a measured length
of the shaft. Thus, if is found to be the

twist on a length I of the shaft, we have

Q =~-

Fig. 123.

where Q denotes the torque on the shaft,

r the radius of the shaft, and n the modulus

of simple rigidity of the material of the

shaft.*

102. Poisson's Ratio. When a solid

is stretched in any direction it undergoes

elongation in that direction and contrac-

tion in every direction at right angles to

it within the limits of elasticity. The

elongation per unit length may be taken as

a measure of the elongation strain, and, in

the same way, the contraction per unit

length may be taken as a measure of the

contraction strain. The magnitude of each of these strains

is proportional to the stretching stress, but their ratio is

constant whatever the stress, and the ratio of the contraction

strain to the elongation strain measured in this way is known

as Poisson's ratio. Thus, if a cylindrical rod of length L and

diameter d undergo, when stretched by any load within the

* It must be remembered that d in this formula is in circular measure.
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limits of elasticity, an elongation I in the direction of its length,

and a contraction 8 laterally at right angles to its length,

the elongation per unit length is T ,
the contraction per unit lengthL

g
^\

is y, and Poisson's ratio is given by the ratio __.
/

L

Hence, if the elongation per unit length, which accompanies

stretching, be denoted by a, and the corresponding lateral

contraction per unit length by ft, and if Poisson's ratio be

denoted, in the usual way, by <r, we have

Imagine a cube of unit edge and unit volume to be stretched in

a direction parallel to one of its edges, and let the elongation

per unit length be denoted by a, and the corresponding lateral

contraction by ]3.
The dimensions of the stretched cube will

now be (1 + a), (1 ft), (1- ft), and its volume will, therefore,

be given by (1 + a) (1
-

ft) (1
-

ft), or (1 + a - 2
ft), if the

quantities o and ft are assumed to be very small.

Now the cube is of unit volume before stretching, so that if no

change of volume is produced by stretching, we must have

(1 +a-2/3) -
1,

or a = 2 ft,

ft 1
or

' = -.
a 2

That is, if stretching were simply a change of shape unaccom-

panied by change of volume, the value of Poisson's ratio for any
material should be J, as found above.

Experiment shows, however, that the value of Poisson's ratio

is always less than J, and differs for different materials. This

proves that stretching generally produces an increase of volume,
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and is, therefore, a compound strain involving change of volume

as well as change of shape.

A method of determining Poisson's ratio experimentally is

indicated in the experiment given below.

Experiment 25. Find the value oi Poisson's ratio for indiarubber.

Get a cord of good rubber about half a metre long and a centimetre in

diameter, and set it up so that it can be stretched to nearly double its

length.

When the cord is set up put on a sufficient straightening load, mark
off by very fine transverse lines a length of about 30 cms. in the

middle of the cord. Measure this length exactly, and measure also

very carefully the average diameter of the cord over this length.
Measurements of the diameter should be made with a good screw gauge

every centimetre along the length, but care must be taken not to

compress the rubber in making the measurements. When these

measurements are taken, load the cord so as to stretch it to nearly
double its initial length ; then measure again the length between the

two transverse lines on the cord and the mean diameter of this part
of the cord.

From these measurements find the elongation per unit length and
the corresponding lateral contraction per unit length, and calculate

Poisson's ratio from the results obtained.

The value of Poisson's ratio for indiarubber is about 0'45.

The value of Poisson's ratio for any material can be derived

theoretically from the value of Young's modulus and the

modulus of simple rigidity for that material, so that in cases

where it cannot be determined experimentally its theoretical

value can be calculated from the values of these two moduli.

The value of Poisson's ratio for a few materials is given
below.

103. Table Of Elastic Constants. The more important
elastic constants for a few typical materials are given below in

C.G.S. units.

It must be understood that the constants for any given

material vary within somewhat wide limits for different

specimens. It is found that the value of each constant depends
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to a considerable extent on the mechanical and thermal treat-

ment to which the material has been subjected.
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105. Elastic After Effects. It has already been stated

that when a body is strained in any way beyond its elastic limit

the strain produced b;f any given stress gradually increases with

the time for which the stress is applied, and that this effect

becomes more and more marked the further the limiting stress

is exceeded.

It is found, however, that the same effect can be observed for

strains within the elastic limits. If any given stress less than

the limiting stress is applied for a very long time, careful

observation shows that the strain gradually increases with the

time. This is one of the time effects connected with stress and

strain which are included under the general term elastic fatigue.

Another similar effect is the temporary or permanent
"
set

"

which a strained body may retain after being relieved from

the stress to which the strain is due. It has been explained

that when a body is strained in any way beyond its elastic

limit it does not recover its original size or shape completely,,

but receives a permanent set which increases as the excess of the

applied stress over the limiting stress increases, and also as the

time for which a given stress is applied.

It is found also that when a body is strained well within its-

elastic limits it does not completely recover its original size

or shape the instant the stress is removed, but receives a small

temporary set from which it recovers more or less completely

with time.* The amount of this temporary set increases with

the stress, and is found, for a given stress, to increase with the-

time for which the stress acts.

It is found, too, that the time for which the strain lasts,,

affects not only the magnitude of the temporary set, but also,,

in a marked degree, the time which this set takes to disappear.

For example, if a body is subjected to a strain of any kind

*
It is probable that there is in all cases of strain a small residual

permanent set which increases with the stress and the duration of th&

strain.
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for a long time, and then, in immediate sequence, to a reversal

of tins strain for a short time, the recovery from the short strain

may be complete before the recovery from the long strain, and

the recovery effects may thus appear to take place in the reverse

order of the strains.

From what has been said above, it will be seen that the

elastic limits for any material are merely the limits within which

the permanent set after strain is negligibly small.

It is probable that in every case of -strain some degree of

set attends recovery from the strain, and that the initial set, at

the instant the stress is removed, decreases with time to a small

permanent final set. When the stress and strain are small the

final set is negligibly small, but at a certain arbitrary point

it becomes appreciable, and the elastic limit is said to be

reached. The limiting stress at which it is reached in any case

thus depends upon the limit at which the permanent set ceases

to be negligible under the prevailing conditions. It thus

appears that no material may be considered to be perfectly

elastic except for infinitely small strains.



294

CHAPTER XVIII.

HYDROSTATICS.

106. Pressure in a Liquid Neglecting- the Weight of

the Liquid. It has already been explained that if a mass of

liquid, whose weight is neglected, is in equilibrim throughout its

mass, it must be subject to a normal pressure uniformly dis-

tributed over its surface boundary. This statement may be

established experimentally, for if we imagine a mass of liquid to

be enclosed in a vessel having its walls fitted at a number of

points with pistons working in liquid-tight, frictionless collars, as

indicated diagrammatically in Fig. 124, it will be found that

equilibrium is possible only when the pressure per unit area

impressed on the liquid by means of the pistons is exactly the

same for each piston. If, when equilibrium exists, the pressure

on the unit area on any one piston is increased by any given

amount, the pressure per unit area on every other piston must be

increased by an exactly equal amount.

It has been explained too in the same article that under the

conditions considered the normal pressure per unit area at the

boundary surface of the liquid is the pressure in the liquid, and

that this pressure is the same at all points and in all directions

at any given point. This result may be established as follows:

Let ABODE in Fig. 125 represent a mass of liquid in equili-

brium under a uniform normal pressure over its boundary

surface. Then, since the whole mass is in equilibrium, any

portion of it, such as BCF, is in equilibrium, and the normal

pressure per unit area over the boundary surface CFDC must r
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therefore, be uniform. That is, the normal pressure per unit

area at any point F, in the boundary surface CFD, is the same

as the normal pressure at any point in the outer boundary

surface of which CD is a part. Now, the surface CFD,

separating the portion CFD from the remainder of the mass of

liquid, may be taken through any point in the liquid, and the

direction of the normal to the surface at that point may have

any direction we please in the liquid ;
it follows that the

pressure in the liquid is equal to the normal boundary pressure

per unit area, and is the same at all points in the liquid, and in

all directions at any given point.

It follows from this that any pressure that may be impressed

Fig. 124.

upon a liquid, is transmitted by the liquid unchanged in value

to every portion of the surface with which the liquid is in

contact. This principle was first stated by Pascal, and is some-

times known as Pascal's lato.

It will be clear from what has been said that if p denote the

pressure in a liquid, the total normal pressure exerted by the

liquid on any surface of area A with which it is in contact, must

be given by Ap. If p is in dynes per square centimetre, and

A in square centimetres, the total normal pressure A.p will be

given in dynes.

It should be noticed that normal pressure is not here con-

sidered as a vector quantity. The total normal pressure on any

surface is, in this case, where the pressure in the liquid is
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uniform, merely the product of the normal pressure per unit

area into the area of the surface
; or, if we consider the surface

divided up into a verylarge number of very small elements of

urea, the total normal pressure on the surface is simply the

arithmetical sum of the normal pressures on these elements of

area, without consideration of the form of the surface, or the

direction of the normal at any point on it.

107. The Hydraulic Press. The hydraulic press is an

important application of the principles explained in the fore-

going Article. It consists essentially, as shown in Fig. 126, of

Fig. 120.

two communicating vessels B and D, both of which are fitted

with pistons A and C, working in water-tight collars.

The two vessels and the communicating pipe P are made

sufficiently strong to stand a very high pressure, and the

diameter of the piston or ram C in the larger vessel is consider-

ably greater than that in the other vessel.

The vessel B communicates with a tank of water, T, so that

when the piston A is worked by means of the lever L, or by
other suitable mechanism, water is pumped from the tank T to

the vessel B, and forced from the vessel B into the vessel D.

Valves at a and b enable the vessel B and the piston A to act as

a force-pump, as explained in Art. 132.
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It will be seen that with this arrangement it is possible, by

exerting a comparatively small downward force on the plunger

A, to cause the head E of the ram C to exert an enormously

greater upward force on any substance enclosed in the strongly-

constructed chamber F, of which the head forms the floor, and

in which it is free to move up and down.

Thus, if the downward force exerted on the plunger A in

forcing the water from B into D is denoted by P. and if

p
a denote the area of cross-section of the piston, then denotes

p
the pressure impressed on the water. That is,

- - is the
QJ

pressure in the water, and is, therefore, the pressure exerted by
the water on the surface of the ram C. Hence, if A denote the

area of cross-section of the ram C, the upward force exerted on

p ^
the ram is A .

,
or . P. If d denote the diameter of the

a a A D2

plunger A. and D the diameter of the ram C, then = --, and
ci d"

-p.2

the force with which the ram is pushed upwards is P . 7,

where P is the downward force exerted on the plunger A. It

follows from this result that if D is greater than d, the upward
force on the ram may be very much greater than P. For

example, if A is 2 inches in diameter, and C 20 inches in

diameter, and a force of 100 pound-weights is exerted on A, the

upward force exerted on C would evidently be (100 X 100)

pound-weights, or nearly 5 tons weight.

It is evident that the pressure in the water filling the vessels

B and D and the communicating pipe P must be very great

when the press is in action. It is necessary, therefore, that these

vessels and the pipe should be made of sufficient strength to

resist extremely high internal pressure. The chamber F, in

which substances such as cotton are compressed for packing,

must also be very strongly constructed to resist the pressure
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exerted on the material by the head of the ram as it is forced

upwards.

The hydraulic press invented by Pascal and improved by
Bramah is sometimes called the Bramah Press.

The principle utilised in this press is applied in a great many
other ways for industrial purposes. In most cases where very

great force has to be exerted at a particular point, hydraulic

power may conveniently be used. Thus, lifts are worked, dock

gates are opened and closed, movable bridges are lifted and

lowered, and other similar operations are performed by hydraulic

power.

A great advantage of the hydraulic method is that the power
can be transmitted from a central station to the points at which

work has to be done by means of strong communicating pipes

similar to the pipe P in the hydraulic press.

108. Equilibrium of a Liquid under the Action of

Gravity. When a liquid is at rest under ordinary conditions

in a vessel of any kind the surface of the liquid must evidently

be horizontal. For, if the surface is not horizontal as at the

point A, in Fig. 127, the weight of a molecule of the liquid at

A may be resolved into two rectangular components along

the normal to the surface, and along the tangent to the surface

at that point ;
the component tangential to the surface will,

however, cause the molecule to move in the direction in which

it acts, and the liquid cannot, therefore, be in equilibrium.

That is, the liquid at the surface cannot be in equilibrium unless

the surface is everywhere horizontal or at right angles to

the direction in which the weight of every molecule acts.

This result is true, however much the free surface is

subdivided by the form of the containing vessel. For example,
if a vessel, such as that shown in Fig. 126, consisting of a

number of parts, which are in free communication with each other,

is filled with water, the free surface exposed to the air will be at

the same level in each part, and if a hole were made at D
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and a tube inserted there the water would rise to the same level

in this tube as in the other portions of the vessel. This is what

is meant by saying that water or any other liquid always

"finds its own level."

It will be seen, too, that if the liquid is in equilibrium

throughout its mass the pressure in the liquid must be the

same at every point in the same horizontal plane. For, if

the pressure at any point A in the horizontal plane HH, in

Fig. 128, is greater than the pressure at any other point B in

the same plane, then, since A and B are at the same level, liquid

will flow from A to B, and the liquid cannot be in equilibrium

throughout its mass. That is, if the mass of liquid is in

equilibrium throughout, the pressure in the liquid is the same at

Fig. 127. Fig. T28.

every point in the same horizontal plane. Since the surface

of the liquid is also a horizontal plane this result evidently

means that the pressure is the same for every point at the same depth

in the liquid.

The pressure due to the weight of the liquid at any point at

a given depth in the liquid is readily found. The pressure

at any point in the liquid is the same in all directions at that

point, and is the same for all points at the same depth. If,.

therefore, we find the pressure on a unit of area taken

horizontally at the given depth we get the pressure in the

liquid at any point at this depth. Now the pressure due to the

weight of the liquid on a horizontal unit of area at any depth
in the liquid is evidently the weight of the column or prism of
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liquid which stands vertically on this unit of area. Hence,

if h denote the depth considered, the volume of the column

standing on this unit of area is (hx 1) or h units, and if d denote

the density of the liquid, the mass of the column is denoted by
hd

y
and the weight of the column by hdff, where y denotes

the acceleration due to gravity.

That is, the pressure at any point at a depth h in a liquid of

density d is given by hdg, where g is the acceleration due

to gravity. For example, the pressure at a depth of 20 cms. in

mercury of density 13 '6 grammes per cubic centimetre is

(20 X 13'6 X 981) dynes per sq. cm., or 266,832 dynes per

sq. cm.

It is obvious from this result that the pressure at any depth

in the liquid increases with the depth, and is

proportional to the depth. If, therefore, we

consider any two points, A and B, in the same

vertical line, as in Fig. 129, the pressure at the

lower point B is greater than the pressure at

the upper point A, but this difference of pres-

sure does not disturb the equilibrium of the

liquid by causing a How from B to A, for it is

exactly balanced by the weight of the liquid

between A and B.

If the surface of a liquid at rest under the action of gravity

is exposed to any uniform external pressure (such as the

atmospheric pressure) this pressure is by Pascal's law exerted

at all points in the liquid, and the pressure at any point

in the liquid will, therefore, be the sum of this pressure and the

pressure due to the weight of the liquid at that point. Thus, if

P denote the external pressure per unit area on the surface, the

pressure at any point at a depth h in the liquid is given by

(P + hJf/).

The total normal pressure exerted by a liquid at rest under

the action of gravity on any aurface in contact with it cannot
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evidently be obtained, as in Art. 106, by multiplying the area of

the surface by the pressure in the liquid, for this pressure

is not constant, but varies, as we have seen, with depth below

the surface of the liquid. Hence, in order to find the total

normal pressure on any surface in contact with the liquid, it is

necessary to divide the area of the surface into an infinite

number of infinitely narrow horizontal strips, and after finding

the normal pressure on each strip to take the sum of these

pressures as the total normal pressure on the surface.

Thus, if the areas of the horizontal strips into which the

surface is divided, are denoted by a1}
ay 3 . . .

,
and the

pressures in the liquid at the depths at which these strips

are taken are denoted respectively by Pp P
2 ,
P3 . . .

, then,

since the pressure in the liquid is the same for all points in

the same horizontal strip, the total normal pressure in the

surface must be given by

N a^! + a<tf).2 + asps + ,

or N = 2 (op).

The general application of this method in any given case

involves mathematical difficulties which we cannot here consider.

It can be shown, however, that the result obtained above is

equivalent to the statement that the total normal pressure on

any surface in contact with the liquid is equal to the weight

of a column of the liquid, whose area of cross-section is the

area of the surface in contact with the liquid, and whose length

is equal to the depth of the centre of gravity of the surface* below

the surface of the liquid.

Example. A trough of triangular cross-section, as shown in

Fig. 130, is filled with water. If the length of the trough is 10 feet,

* That is, the centre of gravity of the surface considered as an infinitely

thin uniform lamina.
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and the dimensions of its cross-section are as given in the figure, find

the total normal pressure on one side and on one end of the trough,
the weight of 1 cubic foot of water to be taken as 62-5 pound-weights.
The area of either siole of the trough is (10 x 2) or 20 square feet.

The depth of the centre of gravity of the side is 1 foot.

The total normal pressure on either side is, therefore, the weight
of a column of water 20 square feet in cross-section and 1 foot in

length, or the weight of 20 cubic feet of water. That is, the total

normal pressure on each side is (20 x 62 '5) or 1250 pound-weights.

Similarly, the area of either end is (2 x 1
) square feet or 2 square

feet, and the depth of the centre of gravity of the triangular surface

is foot.

The total normal pressure on each end is, therefore, the weight of

(2 x I) cubic feet of water. That is, the total normal pressure is

(* x 62-5) pound-weights, or 83 pound- weights.

It must be remembered that the total

normal pressure on any surface is not a

single force acting normally to the sur-

face, but a pressure distributed over the

whole of the surface in contact with the

liquid. In the imaginary case of a liquid

without weight this pressure is distri-

Fig. 130. buted uniformly over the surface, but in

the ordinary case of a liquid under the

tiction of gravity the pressure at any point on the surface

increases as the depth of the point below the surface increases,

so that the total normal pressure cannot be uniformly distributed

over the surface.

If we consider, not the total normal pressure on a surface in

contact with a liquid, but the resultant effect of the pressure

acting on the surface, and imagine this resultant effect to be

produced by an equivalent single force acting at a point on the

surface, the magnitude of this equivalent single force gives the

push or thrust exerted on the surface, and the point at which

this force would act on the surface is called the centre of

pressure for the surface.
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109. The Principle of Archimedes. Let a mass of liquid

be at rest under the action of gravity in any vessel, and

consider the equilibrium of any portion of the liquid taken,

as at A in Fig. 131, in the interior of the liquid, and supposed

to be separated from the rest of the liquid by an imaginary

boundary surface, indicated by the dotted line on the figure.

This portion of the liquid is in equilibrium, and the only

forces acting on it are the pressure exerted on it all over

its boundary surface by the surrounding liquid, and its weight.

The resultant effect of the normal pressure distributed over the

boundary surface must, therefore, be equal and opposite to

the weight of the liquid enclosed by the surface. The weight of

Fig. 131. Fig. 132.

the liquid enclosed by the surface acts vertically downwards

through the centre of gravity of this portion of the liquid ;
the

resultant effect of the normal pressure on the boundary surface

must, therefore, be equal to the weight of the liquid enclosed by
the surface, and must act vertically upwards through the centre

of gravity of this portion of the liquid. That is, the resultant

thrust on any portion of the liquid supposed to be separated

from the rest by an imaginary boundary surface, is equal

to the weight of the liquid enclosed by the surface, and acts

vertically upwards through the centre of gravity of this portion

of the surface.

Now, if a solid body is immersed in a liquid at rest under the

action of gravity, as at A in Fig. 132, the resultant upthrust,
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due to the pressure of the surrounding liquid on the surface of

the body, must evidently be exactly the same as if the space

occupied by the bodyVere occupied by the liquid. For, it is

clear that the resultant thrust on the surface, due to the

normal pressure exerted on it by the surrounding liquid,

depends only on the extent, form, and position of the surface,

and on the density of the surrounding liquid. It evidently

cannot be affected in any way by the nature of the material

within the surface.

The resultant upthrust of the liquid on the solid body
immersed in it is, therefore, equal to the weight of the liquid

displaced by the body, and acts vertically upwards through

the centre of gravity of the displaced liquid.*

Fig. 133.

The principle here stated is the principle of Archimedes.

It follows from this principle that if the weight of a body
immersed in a liquid is greater than the weight of the liquid it

displaces, the body sinks, but if the weight of the body is

less than the weight of the liquid it displaces, the body rises to

the surface and floats.

It follows also that if a body is weighed first in air in

the usual way, and then weighed again as it hangs immersed in

liquid in which it sinks, the weight observed in the second

case must be less than the weight in the first case, for in the

* That is, the centre of gravity of the liquid that would fill the space

actually occupied by the body. It is usual to call this the centre of

gravity of the displaced liquid.
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second case the body is partially supported, or buoyed up, by
the upthrust due to the pressure of the liquid in which it

is immersed. The apparent weight of a body immersed in any

liquid in which it sinks will, therefore, be less than its true

weight in vacuo* by the weight of the liquid which it

displaces.

This result is a specially important one, and has a number of

important applications.

Experiment 26. Show that the apparent weight of a body in

Fig. 134.

water is less than its true weight by the weight of water which

it displaces.

Get a glass sinker similar to one of these shown in Fig. 133,

and made of solid glass rod, or of a tube or bulb weighted with

mercury -as shown in the figure. Weigh the sinker carefully in

the usual way and record the weight. Then hang it from the

suspension hook of the scale pan by a single silk fibre or a very
fine wire, and weigh it as it hangs fully immersed in water. The

arrangement of the balance for making this weighing is shown in

Fig. 134. The beaker containing the water rests on the small

stool or bridge which spans the scale pan, so that the body can

See Art. 125.

20
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hang immersed in the liquid without interfering with the free

movement of the pan as the beam of the balance oscillates.

Record the apparent weight thus observed. The difference between

this weight and the weight first observed should be very nearly
*

equal to the weight of water displaced by the sinker. Now take

the sinker and find its volume as accurately as you can by the

method of displacement explained in Art. 16. Then calculate

(1 c.c. of water weighs approximately 1 gramme) and find by
actual weighing the weight of this volume of water. It will be

found to agree very closely with the apparent loss of weight of the

sinker in water.

It must be noted, however, that the principle of Archimedes

applies not only in the case of a body completely immersed

in a liquid, but also in the case of a body partially immersed

in a liquid. It will be seen by following exactly the same

Jine of argument, as in the case of a body completely immersed,

that the resultant upthrust on the surface of a body partially

immersed in a liquid is equal to the weight of the liquid

displaced, and acts vertically upwards through the centre of

gravity of the displaced liquid.

It follows at once from this result that when a body floats

in any liquid the weight of the liquid displaced must be equal

to the weight of the floating body. This application of the

principle of Archimedes is sometimes referred to as the principle

of flotation. It will be seen that in all cases where a body
floats on a liquid, the displacement of liquid by the floating

body depends on the weight of the body, for the weight of

the displaced liquid must in overy case be equal to the weight

of the body.

Experiment 27. Take a test-tube and pour a sufficient quantity
of mercury into it to make it float in water in a vertical position

immersed to rather less than half its length.

Float the test-tube in water in a graduated measuring vessel so

that any change in the volume of water displaced by the tube can

be measured by means of the graduations on the measuring vessel.

* See Art. 125.
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Note the reading of the water level in the vessel, then pour
20 c.c. of water into the test-tube (from another measure), and

again note the reading. The difference of these two readings

gives the increase in the volume of the displaced water, and it

will be found in this case to be 20 c.c., the same as the volume

poured into the test-tube. That is, any increase (or decrease) in

the weight of the floating body produces an exactly equal increase

(or decrease) in the weight of the displaced liquid. This result is

in accordance with the principle of flotation.

[It may be noted that a test-tube floating in this way in a

measuring vessel may be used as a rough balance. For if any

body is placed in the tube and the increased displacement is found

to n c.c., it is obvious that the weight of the body is roughly
n grammes. ]

Horizontal liquid surfaces at rest on the earth conform to the

generic curved outline of the globe, and are only approximately

horizontal over very small areas. The surface of the ocean or a

large lake is distinctly curvilinear.
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CHAPTER XIX.

EXPERIMENTAL DETERMINATION OF SPECIFIC

GRAVITY AND DENSITY.

110. Methods Based on the Principle of Archimedes.
The most convenient and accurate methods of determining the

specific gravity of a solid or a liquid are direct applications of

the principle of Archimedes.

The specific gravity of a substance - has been defined as the

ratio of the weight of any volume of the substance to the

weight of the same volume of water at 4 C. It is necessary,

therefore, in order to determine the specific gravity of a

substance to find the weight of a suitable portion of the

substance, and then the weight of an exactly equal volume

of water at 4 C.

Now, when a solid body is weighed in water its apparent

loss of weight, as explained above, gives the weight of the

displaced water, and the volume of this displaced water must be

exactly equal to the volume of the body which displaces it.

Hence, if a solid body is weighed in air in the usual way, and

then in water, the weight in air gives practically* the true

weight of the body, and the difference of the two weights, as the

apparent loss of weight in water, gives the weight of an exactly

equal volume of water. The specific gravity of the material of

the -body is given, therefore, at once, by the ratio of the weight

of the body in air to its apparent loss of weight in water. That

is. if W denote the weight of the body in air, andW its weight

*See Art. 125.
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in water, then the apparent loss of weight of the body in

water is W W' and s
;
the specific gravity of the material

of the body is given by

W
* - w-w'

It must be noted, however, that this gives the specific gravity

of the substance at the temperature of the water in which it is

weighed, relative to water at this temperature. If the tempera-
ture of the water is 4 C., then s is the true specific gravity

of the substance at 4 C.
; if, however, the water is at t C.,

and the density of water at t C. relative to water at 4 C.

is denoted by o-, then the true specific gravity of the substance

at t C. is sor, for if the substance is s times as dense as water

at t C., and water at t C. is a times as dense as water at

4 C., it follows that the substance is so- times as dense as water

at 4 C.

The water in which the body is weighed should be pure
distilled water free from air.

The method of making a determination of specific gravity by
this method is indicated in Fig. 134. The body is first weighed
in air, in the usual way, and then weighed in water by the

arrangement shown in the figure.

The method, in this direct form, obviously applies only to

solids which are insoluble in water. If the solid is denser than

water there is no difficulty in making the necessary weighings,

but if the solid is less dense than water, a sinker must be

attached to it to make it sink. This complicates the method

slightly, but the effect of the sinker is easily eliminated. In

order to effect this elimination it is necessary to make three

weighings: (1) To weigh the solid in air in the usual way;
(2) to weigh the sinker by itself in water; and (3) to weigh the
" combination

"
of solid and sinker fastened together* in water.

* A piece of platinum, silver, or lead wire, which can be coiled round

the solid, forms a coiwenient sinker.
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It will readily be seen that if Wj denote the weight of the solid

in air, W2 the weight o,f
the sinker in water, and W3 the weight

of the combination in water, then [(Wl -f- W2)
W

3]
must be

the apparent loss of weight of the solid in water, and that s, the

specific gravity of the solid, is, therefore, given by

This gives, as before, the specific gravity of the solid relative

to water at the temperature of weighing, and is subject,

theoretically, to the correction indicated above, in order to

get the specific gravity relative to the water at 4 C.

If the solid is soluble in water then the same general

method may be adopted, but, instead of weighing it in water, it

should be weighed in some liquid in which it is insoluble, or

in a concentrated solution of the solid in water. Then the value

of s, given by the ratio of the weight of the substance in air to

the apparent loss of weight in the liquid, is the density of the

solid relative to the liquid, and if cr denote the density of this

liquid relative to water at 4 C., then s& gives, as explained

above, the true specific gravity of the solid.

This method may also be adapted for the determination

of the specific gravity of a liquid.

The apparent loss of weight of a sinker in any liquid gives

exactly the weight of the displaced liquid. Hence, if the

same sinker is weighed in any given liquid and in water,

the apparent loss of weight in the liquid gives the weight

of a certain volume of the liquid, and the apparent loss of

weight in water gives the weight of an exactly equal volume

of water. The specific gravity of the liquid will, therefore,

be given by the ratio of the apparent loss of weight of the

sinker in the liquid to its apparent loss of weight in water.

Thus, if Wj denote the weight of a sinker in air, W2 its apparent

weight in water at 4 C., and W3 its apparent weight in any
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liquid, the specific gravity of the liquid is evidently given by

W,-W8

This method can be adopted with most liquids, for a glass

sinker, similar to those shown in Fig. 133, suspended by a fine

platinum wire would not be attacked by many liquids.

It must be noted that all the methods referred to above

are capable of the highest accuracy. The only measuring

operation which they involve is that of weighing, and this

is an operation which can be performed with a good balance to

a very high degree of accuracy.

111. The Specific Gravity Bottle. The specific gravity of

a liquid may be determined conveniently by means of a specific

Fig. 135. Specific Gravity Bottles.

gravity bottle or flask. A common form of this bottle is shown

on the left in Fig. 135. It consists of a small flask fitted with a

glass-stopper made from a short length of thick-walled tubing of

very fine bore. The bottle thus becomes, when the stopper is

inserted, a small flask with a very narrow neck formed by
the bore of the stopper, and if it is filled with liquid, by
first nearly filling it to the brim, and then inserting the stopper

so as to cause the liquid to overflow through the bore, there

is every certainty that the volume of liquid contained by the
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bottle at aay given temperature will be exactly the same every

time it is properly filled.

If, therefore, a specific gravity bottle is filled, first with the

liquid, whose specific gravity is to be found, and then with

water, and the weight of the liquid which fills the bottle in each

case is carefully determined by making the necessary weighings,

the ratio of the two weights thus obtained evidently gives the

specific gravity of the liquid. The ratio is the weight of a

certain volume of the given liquid to the weight of the same

volume of water, and is, therefore, the density of the liquid

relative to water at the temperature of filling the bottle.

Hence, if s denote the value of this ratio, and CT denote, as above,

the specific gravity of water at the temperature of the experi-

ment relative to water at 4 C., the true specific gravity of the

liquid relative to water at 4 C. is given by so-, as already

explained. This is, of course, the specific gravity of the liquid

at the temperature at which the bottle is filled with it.

The process of determining the specific gravity of a liquid by
means of a specific gravity bottle thus resolves itself into making
three weighings. The bottle is made thoroughly clean and dry

and weighed carefully, (1) when empty, (2) after being filled

with the liquid at a known temperature,* and (3) after being

filled with water at a known temperature.
* Then if W

x denote

the weight of the empty bottle, W 2
the weight of the bottle

after being filled with the liquid at t C., and W3 the weight of

the bottle after being filled with water at t, the specific gravity

of the liquid at t C. relative to water at t C. is given by

,

* The bottle is most conveniently filled with a liquid at a definite

temperature by immersing it in the liquid in a beaker containing the

liquid and a thermometer indicating the temperature. The temperature
at which the bottle is filled in each case should be a little higher than

the temperature at which the weighings are made ; this prevents loss of

liquid by overflow after filling.



DETERMINATION OF SPECIFIC GRAVITY AND DENSITY. 313

Then, if cr denote the specific gravity of water at t C. relative

to water at 4 C., the true specific gravity of the liquid at

t C. is scr, as stated above.

It is evident that the weight Wlt
and the weight W3 for ivater

at 4 0. may be determined once for all, so that if these weights

are known accurately for any particular bottle, it is only

necessary in finding the specific gravity of a liquid with that

bottle to find W., as accurately as possible. The value of

(Wo Wj) can then be found from the known value of W
lt
and

(W3 Wj) is a known constant for the bottle, so that the

true specific gravity relative to water at 4 C. is given at

once by the ratio denoted by s above.

In some cases a counterpoise which accurately balances the

weight of the clean dry bottle is provided with the bottle.

The use of this counterpoise does away with the necessity of

drying and weighing the bottle every time it is used.

The specific gravity bottle may also be used for finding the

specific gravity of a solid in a finely divided state. Thus, the

specific gravity of shot, sand, metal filings, insoluble powders, and

other similar substances may be found by the method given below.

The specific gravity bottle is not used as in the case of

a liquid but as a means of finding the weight of water displaced

by the solid substance. The weight of water which completely
fills the bottle can be found as explained above. Similarly,

the weight of water which fills the bottle when the solid substance

is inside the bottle can also be found. The difference of these

two weights evidently gives the weight of water displaced by
the solid substance.

Hence, if W denote the weight taken of the solid substance,

Wj the weight of the clean dry bottle, Wo the weight of the

bottle filled with water, and W3 the weight of the bottle with

the solid substance inside it, and then filled up with water,

then (W., Wj) is the weight of water which completely
fills the bottle, [W :t

-
(W, + W)] is the weight of water



314 GENERAL PHYSICS.

which fills the bottle when the solid is in the bottle, and

the difference of these two weights is, evidently, the weight of

water displaced by the solid in the bottle. If this weight be

denoted by W the specific gravity of the substance is given by

w
s = w>

for W is the weight of a volume of water exactly equal to

the volume of the solid substance of weight W.
This result must, if necessary, be corrected for the tempera-

ture of the water as explained above.

The process of making a determination by this method is

fairly obvious. A convenient quantity of the solid substance

is taken about sufficient to fill the bottle half full and its

weight, W, is determined in the usual way. The weights Wj
and W., are then determined as explained above. The bottle

is then half filled with water and the solid substance is run into

it slowly in such a way that every particle of the substance is

wetted by the water, and no air bubbles are entangled in the mass.

The substance is then allowed to settle, and when this is over

the bottle is, if necessary, filled up with water and the stopper

inserted. The weight W3
can then be determined, and the specific

gravity of the substance calculated from the data obtained.

Example. Find the specific gravity of sand from the following

data :

Weight of sand taken - 96 '4 grammes.

Weight of bottle = 23 '1

Weight of bottle full of water = 123 "3

Weight of bottle containing the sand

and filled up with water = 170 '3 ,,

From these data we get

Weight of water which fills the bottle

= (123-3
-

23-1) grammes = IGO'2 grammes.

Weight of water in the bottle when
the sand is placed in the bottle =

170-3 - (90-4 + 23-1) grammes = 50-8 ,,
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Hence, weight of water displaced by the sand is (100 '2 - 50 '8)

grammes or 49 '4 grammes.
The weight of the sand is 96*4 grammes.

96 "4
The specific gravity of the sand is, therefore, ^-^ or l'~-

The correction for the tenfperature of the water is not here

made. It is at most a very small correction, and need only be

made in very accurate determinations.

[No attempt should be made to work an example of this kind

by the iise of a formula. Every step should be set out from first

principles, but the student must know definitely, from the theory

of the method, the successive steps to be taken.]

It will be seen that a determination of the specific gravity

by means of a specific gravity bottle involves weighing only,

and may, therefore, be made with great accuracy.

113. Hydrometers. An hydrometer is an instrument

designed to float vertically in a liquid and constructed to

indicate the specific gravity of the liquid, either by the depth

to which it sinks when floating in the liquid, or by the weight

necessary to make it float immersed to a certain fixed depth

in the liquid. In the former case the hydrometer is of the

type known as variable immersion hydrometers, in the latter case

it is called a constant immersion hydrometer.

A common form of variable immersion hydrometer is shown

in Fig. 136. It consists of a glass bulb and stein weighted with

mercury so that it floats with the stem vertical. When floating

in any liquid the hydrometer is immersed to a depth which

depends upon the specific gravity of the liquid, and since the

weight of the displaced liquid is, in any liquid, equal to the

weight of the instrument, the depth to which it is immersed

must increase as the density of the liquid decreases. It is,

therefore, possible by graduating the stem to provide a scale

which will indicate the specific gravity of the liquid in which

the instrument floats within a range which depends upon
the construction of the instrument. Thus, if an hvdrometer
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floats immersed up to a mark at the bottom of the stem in

water at 4 C. and up to a mark near the top of the stem

in a liquid of specific gravity 0'7, it is evidently possible by

graduating the stem between these two marks so as to indicate

Fig. 136. Variable Immersion Hydrometer.

any specific gravity between '1 and 1. Similarly, if an instru-

ment floats immersed up to a mark near the top of the stem

in water at 4 C. and up to a mark at the bottom of the stem
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in a liquid of specific gravity i'2, it may evidently be graduated

to indicate any specific gravity between 1 and T2.

In this way by means of a set of hydrometers with con-

secutive or overlapping ranges it is possible to determine the

specific gravity of a liquid by simply finding the instrument

which floats in it and then reading the graduation which marks

the depth to which it floats.

A number of somewhat empirical scales of graduation have been

used for various technical purposes ;
the simplest for general

use is that on which the specific gravity of water at 4 C. is

marked 1,000, and specific gravities higher and lower than

this by correspondingly higher and lower numbers.

On this scale the specific gravity corresponding to

any division is evidently obtained by dividing the

number of the division by 1,000. Thus, if an

hydrometer floats in a liquid immersed to a point

marked 969 on the scale of the stem, the specific

gravity of the liquid is '969.

The only constant immersion hydrometer in

common use is Nicholson's hydrometer. A convenient

form of this instrument is shown in Fig. 137. It

consists of a central hollow cylinder or barrel, C,

carrying, in the same axial line, an upper pan at A Nicholson's

and a lower pan at B. The lower pan is weighted Hjdro-

with lead so that the instrument may float with its

axis AB vertical, and a fine line on the straight wire stem which

carries the upper pan marks the fixed point to which the instru

ment is immersed in all liquids.

The hydrometer is so constructed that it floats in any liquid

with only a portion of the central barrel immersed. It can,

however, be sunk in any liquid to the fixed mark on the stem

by placing weights in the upper pan, until the mark is seen

at the surface of the liquid. This adjustment is best made

by first sinking the instrument a little too deeply so that the
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mark is below the surface of the liquid, and then gradually

reducing the weight in the pan until the image of the mark,

seen from below by toteal reflection at the surface, coincides with

the mark itself.

When the hydrometer floats in any liquid immersed exactly

to the mark on the stem the weight of the instrument together

with the weight in the pan is, by the principle of Archimedes,

equal to the weight of the displaced liquid. Hence, if the

hydrometer floats immersed up to the mark in any given

liquid, and then in water at 4 C., it displaces exactly the

same volume in* each case, and the ratio of the weight of the

loaded instrument as it floats in the liquid to its weight as

it floats in the water is, therefore, the specific gravity of the

liquid. That is, if W denote the weight of the hydrometer,

Wj the weight necessary to sink it to the index mark in the

liquid, and W the weight necessary to sink it to the mark

in water at 4 C. (or at t C. if the necessary correction is

afterwards made), then, s, the specific gravity of the liquid

is ^iven by

Wi + W
-

w, + w
The weights W and \V

X may evidently be determined once

for all as working constants for the hydrometer for which they

are determined.

Nicholson's hydrometer may also be used to determine the

specific gravity of a solid substance. The method of using

the instrument for this purpose is as follows : The hydrometer

is floated in water in a tall wide jar as shown in Fig. 138.

The weight necessary to sink it to the index mark is then

found as explained above. The weights are then removed

and the piece of solid whose specific gravity is to be found

is placed on the pan. The weight of the solid must not,

however, be sufficiently great to sink the instrument to the

index mark, and weights must, therefore, be added to effect
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this adjustment. When this adjustment is made and the

weight in the pan noted, the solid is removed from the upper

pan and placed in the lower pan where it displaces its own

volume of water. Since the apparent weight of the solid is

less in water than in air the hydrometer will now float less

deeply immersed, and it is necessary, in order to sink it again

to the index mark, to add to the weight in the upper pan.

This is done and the weight in the pan again noted.

The specific gravity of the solid can now be

calculated from the data obtained in this way.

Let W
t
denote the weight necessary to sink

the hydrometer to the index mark in water,

W
2
the weight necessary to sink it when the

solid is in the upper pan, and W
3
the weight

necessary for the same purpose when the solid

is in the lower pan. Then, a very little con-

sideration will show that the weight of the

solid is (Wj W.
2 ),

and the weight of water

which it displaces when in the lower pan is

(\V3 W.,). The specific gravity of the solid

is, therefore, given by

W, - W,
w, - w;

Fig. 138.

The method is not accurate enough to make

it necessary to consider the correction for the temperature of the

water. It will be seen that the hydrometer serves as a balance

for determining the weights to be observed in using the instru-

ment. This is convenient for some purposes, but it will be

found in practice that the necessary weights cannot be found

with certainty to much less than a decigram.

This hydrometer is mainly of theoretical interest and is used

more in the laboratory than anywhere else. It is usually made

of brass for use in water for the determination of the specific
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gravity of solids. It can, however, be made of glass and

platinum wire, and may then be used for liquids or solids.

In using the instrument a guard disc should be placed over

the mouth of the jar containing the liquid to prevent the

weights getting into the liquid by falling in accidentally, or

by overloading the hydrometer. The disc may be of cardboard,

glass, or sheet metal, and must be cut with a narrow radial slot

for the stem of the hydrometer. This disc serves also to keep
the instrument in the middle of the liquid and prevents it

clinging to the sides of the jar.

113. Liquid Column Methods. The specific gravity of

a liquid may be determined by balancing a column of the liquid

hydrostatically against a column of water, and then comparing
the heights of the two balancing columns. Thus, let a quantity

of mercury be poured into the bend of a U-tube, and then let

water be poured on the mercury in one limb of the tube till the

column of water, AB, in this limb is balanced by a column of

mercury, CD, in the other limb, as shown in Fig. 139. It has

been shown in Art. 108 that in a liquid at rest the pressure in

the liquid is the same at all points in the same horizontal plane.

Hence, if we take a horizontal plane through the junction of the

water and the mercury at A, in the limb AB, it follows that the

pressure at A, in the limb AB, is the same as the pressure at C,

in the limb CD.*

Now, if
/&]_

denote the height of the column AB, and d^ the

density of the water of the column, the pressure at A due to

* In applying this principle in a case of this kind it is very important

to notice that the principle applies only when the liquid betoiv the

horizontal plane considered is one and the same liquid throughout. For

example, if we take any horizontal plane between C and D in the figure,

the pressure is not the same at points in this plane in both limbs of the

tube. The essential point is" that the pressure will be the same at two

points in the same horizontal plane only if there is free communication

between the points by a path below the plane which passes from one

point to the other through one and the same liquid.
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the weight of the overlying water is h^g, as explained in Art.

108. Similarly, if h,2 denote the height of the mercury column

CD, and d.2 the density of the mercury, the pressure at C due to

the weight of the overlying mercury is h2d2{j.* If, therefore, the

pressure at A is equal to the pressure at C, we must have

h^g = h.
2
d2g,

or
Ji^d^

= k.
2d.,.

That is, y
1 =

Fig. 140.

But is the ratio of the density of mercury to the density of

water, and is, therefore, the relative density or specific gravity

of mercury. That is

* The external atmospheric pressure impressed on the columns at B and
D is the same for both columns, and need not here be considered.

21
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where s denotes the specific gravity of mercury at the tempera-

ture of the experiment relative to water also at the temperature

of the experiment. If this temperature is observed the usual

reduction to 4 C. can be made, but the method is not, under

ordinary conditions, sufficiently accurate to make it worth while

doing so.

This method may be employed for determining the specific

gravity of any liquid, or for comparing the densities of any two

liquids, by using a tube of the form shown in Fig. 140 instead

of a simple U-tube. One liquid is poured into one branch,

ABC, of the tube, and the other liquid into the other branch,

DEF. The air in the bend AD separates the two liquids, and

prevents them coming into contact with each other. The tube

is filled by pouring a little of one liquid into one branch, and

then a little of the other liquid into the other branch, and

continuing this process until a sufficient quantity of liquid has

been introduced into each branch. The air in the bend AD is

compressed as the quantity of liquid in each branch increases,

and the increased pressure which it thus exerts on the liquid

surfaces at A and D forces the liquid to stand higher in the

outer than in the inner limb in each branch.

Suppose the tube to be filled, as shown in the figure, with

water in the branch ABC, and with a liquid whose specific

gravity is to be determined, in the branch DEF.

Then, if AB is the horizontal through A, the pressure in the

tube at A is the same as the pressure at B, and the pressure at

B is the pressure due to the column of water BC, together with

the atmospheric pressure impressed on the surface of the water

at C. That is, if A
t

denote the vertical height BC, ^ the

density of the water in the tube, and P the atmospheric pressure

impressed on the surface at C, the pressure at B is (P + hidtf),

as already explained ;
and this is also the pressure at A when

the water is in contact with the air in the bend AD.

In exactly the same way, if DE represents the horizontal
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through D. it follows that if h.2 denote the vertical height EF,

<1.2
the density of the liquid in the branch DEF, and P the

atmospheric pressure on the liquid surface at F, the pressure at

E in the liquid is (P -f- h.2dzg), and that this is also the pressure

at D where the liquid is in contact with the air in the bend AD.

The pressure at A is, however, practically the same'" as the

pressure at D, for it is the pressure of the air in the bend AD.
We may, therefore, write

P + hfy = P + Maft
or h^ = h.

2d.2 .

h. do
That is, h,=^ s

>

as obtained above.

It may be noticed that the most direct method of obtaining

the above result is to note that the pressure due to each of the

liquid columns BC and EF gives the difference between- the

pressure of the air in the bend AD and the external atmospheric

pressure. The pressure due to these two columns are, therefore,

equal, and we may at once write h^g ~ W2<7, and so obtain

the value of s, as above.

Another application of this method is found in the hydro-
meter usually known as Hare's hydrometer. The essential

parts of this hydrometer are shown in Fig. 141. It consists of

two straight lengths of glass tubing, BC and EF, about a metre

long, set up a short distance apart in a vertical position, and

joined at their upper ends by rubber connections, RR, to the

T-piece T. The lower ends of the tubes dip into the beakers A
and D, and the whole piece of apparatus is supported by a

suitable wooden stand. A rubber tube, S, is attached to the

stem of the T-piece, and is used to draw air out of the tubes.

* Pressure due to the weight of the air may be neglected except in

cases where, as in the atmosphere, very great differences of level have to

foe considered.
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The two liquids whose densities are to be compared are placed

in the beakers A and D. Then, on withdrawing air from the

tubes, by means of the tube S, the pressure of the air in the

tubes decreases; that is, the pressure on the liquid surfaces

inside the tubes decreases, and the liquid is forced up into each

tube by the excess of the external atmospheric pressure on the

Fig. 141.

liquid surfaces in the beakers outside the tubes, over the pressure

at the same level inside the tubes. When the liquid rises in each

tube to such a height that the pressure in the liquid in the

beakers is the same at the same level outside and inside the

tube the mass of liquid in each beaker and its tube will again be

in equilibrium. Hence, if the tube S is closed with a screw-clip

after a quantity of air is withdrawn from the tubes, a column of

liquid will be left standing in equilibrium in each tube.
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In an experiment with this hydrometer for determining the

specific gravity of a liquid, suppose water to be placed in the

beaker A and the liquid in the beaker D, and let BC and EF

represent the columns of water and liquid respectively, which

stand in the tubes after air has been withdrawn by the tube S,

and the tube closed.

Then, if 7^ denote the vertical height of the column of water

BC, measured from a point, B, inside the tube at the level of the

water outside the tube to the upper level at C, ^ the density of

the water, and p the pressure of the air in the bend CRKF, the

pressure in the water at the point B is (p + h^g). Similarly,

it can be shown that the pressure in the liquid column EF at

the point E inside the tube at the level of the liquid outside the

tube is (p -f htfl*g), where A., denotes the vertical height EF and

d3 the density of the liquid.

Now, the pressure at B and the pressure at E must be equal,

for each is equal to the external atmospheric pressure on the

surface of the liquid in the beaker. We may, therefore write

p -f- h^y = p
or

That is,

where s is the specific gravity of the liquid relative to the water

in the beaker.

As in the case considered above, this result may be obtained

more directly and concisely by stating that the pressure due to

each of the columns BC and EF measures the difference between

the pressure of the air in the bend CRRF and the external

atmospheric pressure. We may, therefore, at once write

h
}
d

}y
= hiLy, or y

1 =
s, as before.

/i.i

This method of comparing densities by balancing liquid

columns is not in ordinary practice a very accurate method.
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It is, however, capable of considerable accuracy when specially

accurate methods of measuring the heights of the columns are

adopted. A very notable instance of the use of this method is

the method of Dulong and Petit for determining the coefficient

of absolute expansion of mercury,* by comparing the density of

mercury at different temperatures with its density at C.

The same method was also ernplo}
red by Thiesen in one of the

best of the more recent determinations of the density of water

at different temperatures relative to water at 4 C.

It is important, too, to note that the usual method adopted in

physical measurements for measuring pressure or difference of

pressure is to balance the pressure to be measured by a liquid

column, and then to calculate the magnitude of the pressure from

the height of the column and the density of the liquid.

114. Absolute Density of Water. It will be understood

from what has been said above that the best method of

determining the absolute density of any liquid is to determine

its specific gravity relative to water at 4 C. Then, if the

absolute density of water at 4 C. is known, the absolute density

of the liquid can be calculated. Thus, if s denote the specific

gravity of the liquid, and d the absolute density of water at

4 C., sd is the absolute density of the liquid.

The absolute density of water at 4 C. is thus an important

physical constant, and a vast amount of careful and laborious

research has been expended on the experimental determination

of this constant.

The results of several important determinations made in

recent years agree in placing the absolute density of pure, air-

free water, at the normal atmospheric pressure, and at the

temperature of its maximum density (4 C.) between 0'99995

and 0*99996 in grammes per cubic centimetre.

115. Indirect Methods of Measuring Capacity and
Volume. The most convenient and most accurate method of

* See fffnt. Art. 25.
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finding the capacity of a vessel is to find, by direct weighing,

the weight of water or mercury which fills the vessel at a known

temperature. The volume of the mass of liquid can be at once

calculated from its mass and density at the observed temperature

of filling, and this gives the capacity of the vessel at this

temperature. Thus, if m denote the mass of the liquid which

fills the vessel, and d its density at the observed temperature,

then is its volume, and this is also the internal volume or

capacity of the vessel. Water is used when the capacity to be

measured is large, and mercury when the capacity is small.

Experiment 28. Find the capacity per cm. length of the

bore of the given tube of fine bore. Clean and dry the tube care-

fully. Draw a long thread of clean, dry merciiry into the tube and

measure the length of thread as accurately as possible. Observe the

temperature at which this measurement is made. Then run the

mercury out of the tube into a weighed porcelain crucible, and find

its weight by careful weighing on the balance. From the data thus

obtained calculate out the required capacity.

Example. In an experiment of this kind the following data were

obtained. Calculate the capacity per cm. length, and also mean

diameter, of the bore of the tube.

Length of mercury thread at 15 C., . 15 '43 cms.

Weight of mercury, .... 0'2134 gramme.

Take density of mercury at 15 C. as 13 '59.

The weight of mercury which fills 1 cm. length of the tube is

0-2134

15^43

and the volume of this mass at 15 C is

0-2134

15-43 x 13-59

or 0-00102 c.c.

This is the capacity of 1 cm. length of the bore of the tube.
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If r denote the radius of the bore in cms. then (1 x ?-) is the

capacity of 1 em. length of the bore. We, therefore, have

* <* = 0-00102,

0-00102

That is, ,>, =

That is, the diameter of the bore of the tube is O'OIS cm.

A similar method based on the principle of Archimedes may
be employed for finding the volume of a body. The body is

weighed first in air, and then in water
;
the apparent los.s of

weight thus observed is the weight of the displaced water, and

the volume of this water is exactly equal to the volume of the

body by which it is displaced. The volume of the body can,

therefore, be calculated from its apparent loss of weight in water

and the density of the water at the temperature of weighing.

Thus, if w denote the apparent loss of weight in water at f C.,

and d the weight of unit volume of water at t C., the volume of

the body at t C. is - units of volume.

Experiment 29. Find the diameter of a fine wire by the method

described above.

Measure off, as exactly as possible, a metre of the wire, coil it up,

and weigh it in air. Then wash it in dilute caustic soda and water,

and weigh it in water. From the apparent loss of weight, and the

density of the water, calculate out the diameter of the wire.

Example. In an experiment of this kind the following data were

obtained. Calculate the diameter of the wire.

Weight of 1 metre of wire in air, . . 1 '8642 grammes.

Weight of wire in water, . . . 1'6537 ,,

Temperature of water, . . . . 15 C.

Density of water at 15 C. is 0'999 gramme per c.c.

The apparent loss of weight in water is here (1-8642 -
1-6537)

grammes, or 0*2105 gramme.

The volume of water displaced by the wire at 15 C. is, therefore,

^ c.c., and this is also the volume of the wire at 15 C.
0-999
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If r denote the radius of the wire in cms. the volume of the wire is

100 x irr2 cub. cms. We, therefore, have

100 ^,2 _ _ '~1P_
5

0-2105

100 x TT x 0-999'

and r = J"~ '2105 - - 59\ 100 x TT x 0-999

That is, the diameter of the wire is 0*0518 cm.

The methods illustrated by the examples given in this article

are in very general use, and, when carefully carried out, they

are probably the most accurate methods of measuring capacity

or volume.
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CHAPTER XX.

PROPERTIES OF LIQUIDS.

116. Compressibility of Liquids. It has already been

explained that although a liquid possesses no elasticity of form

or rigidity, it possesses elasticity of volume in a marked degree.

The volume elasticity of a liquid can, however, be exhibited,

under ordinary conditions, only by the resistance it offers to

compression, and the compressibility of a liquid is, therefore,

the only elastic property by which the volume elasticity >of the

liquid can be determined experimentally.

The general method which has been adopted in studying the

compressibility of a liquid has been to place the liquid in a

glass tube made up of a bulb and a graduated stem, and then to

subject the liquid to pressure, either by immersing the open

tube in water under pressure, or by putting the interior of the

tube in communication with a reservoir of compressed air.

The compression of the liquid was then indicated by the

graduations on the stem of the tube, and the pressure applied

was measured by a suitably arranged manometer.

A tube of this kind was first used for this purpose by Oersted,

and is usually known as a piezometer. One form of the tube is

shown in Fig. 142; it is a glass tube of sufficient strength to

resist considerable pressure, and consists, as shown, of a long

cylindrical bulb and a long fine-bore stem graduated in divisions

whose volume relative to the capacity of the tube up to the zero

of the scale has been accurately determined by calibration

with mercurv.
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One of the simplest and most satisfactory methods of making

a determination of the compressibility of a liquid by means

of the piezometer is that originally adopted by Regnault. The

tube is filled to a suitable point in the graduated stem with the

liquid whose compressibility is to be determined, and is then

immersed in water to which great pressure can be applied. The

water is contained in a vessel specially fitted for the application

and measurement of the necessary pressure, and

capable of withstanding the pressure so applied.

The liquid in the open piezometer tube is in this

way subjected to known pressure and suffers cor-

responding compression ;
at the same time, the tube

is subjected to the same pressure internally and

externally, and is, therefore, compressed to the same

extent as a solid piece of glass of the same external

volume would be compressed. It follows from this

that the compression of the liquid, as indicated by
its apparent change of volume in the piezometer

tube, is really the difference between the real com-

pression of the liquid and the compression of the

tube, and that the real compressibility of the liquid

can be found from the data of the experiment only -pig. 142.

if the compressibility of the material of the tube is

known. This fact makes the accurate determination of the

compressibility of a liquid very difficult, but satisfactory

methods have been devised for finding the compressibility of

the material tube, and the determination of liquid compres-

sibilities can now be made with some accuracy.

It will be seen from what has been said above that if V
denote the volume of liquid in the piezometer tube, v the real

decrease of volume produced by compression under a hydrostatic

pressure p, then v/\ measures the volume strain produced in the

liquid, and : is the modulus of rnhime elasticity for the liquid.
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Instead of calculating out the modulus of volume elasticity in

this way it is more usual to give what is called the coefficient of

compressibility of the liquid. This coefficient is merely the

decrease in volume per unit volume per atmosphere increase of

pressure. That is, if p in the notation used above be taken

to denote the increase of pressure in atmospheres, then --

r

is the coefficient of compressibility which is thus seen to be

the reciprocal of the modulus of volume elasticity when p is

measured in atmospheres.

The following coefficients of compressibility for water, sea-

water, and mercury were given by Professor Tait, and serve to

indicate the order of magnitude of this constant for liquids :

Liquid. Coefficient of Compressibility.

Water, . . . 0-0000047

Sea water, ..... 0*0000041

Mercury, . . . 0'0000036

This result means, for example, in the case of water that an

increase in pressure of one atmosphere will compress any given

volume of water by a little less than five millionth.? of its initial

volume.

117. Viscosity. Although a liquid offers no elastic resist-

ance to change of form, it is found that most liquids resist

this change in some degree as the result of molecular friction

between adjacent layers of the liquid. This resistance merely

acts as an opposing force while the change of form is in progress,

and does not tend at any stage in the process to restore the

mass to its initial form. It is of zero value at any instant when

the rate of change is zero, and it is found that its value at any

instant while the change is in progress is proportional to the rate

at which the change takes place.

The property of a liquid which enables it to offer this

frictional resistance to change of form is called viscosity. Any
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liquid, such as glycerine, which possesses this property in a

marked degree is called a viscous liquid, while a liquid such as

water or alcohol, which is of comparatively low viscosity, is

called a mobile liquid.

It will be seen from what has been said above that if a viscous

substance changes form very slowly the resistance which it offers

to the change will be very tmuH. That is, a liquid substance,

whatever may be its viscosity, will undergo change of form

under the action of the smallest force
; but, if the viscosity of

the substance is great, the rate at which the change of form goes

on may be very slow. If we adopt this fact as the criterion of

a liquid it is found that a number of substances which appear to

be solids are essentially liquids of very great viscosity. Thus,

substances such as pitch, sealing-wax, cobbler's wax, and other

substances are found to undergo continuous and progressive

change of form under the influence of a small deforming force.

A mass of pitch, for example, if placed on a table, will, in time

flow over the surface of the table and cover it with a thin sheet

of pitch. This flow takes place at constant temperature below

the melting point, so that it is not due to melting, but the

viscosity increases very rapidly as the temperature falls below

the melting point. Substances which behave in this way are

probably at the ordinary temperature in the semi-plastic state

which precedes melting and which may extend, in some sub-

stances, over a considerable range below the melting point.

The method of defining and measuring the viscosity of a liquid

is based upon the following considerations.

Let ABCD, in Fig. 143, represent at a given instant a

horizontal rectangular plate of liquid, of very small thickness, in

a mass of liquid flowing horizontally in the direction of the

arrow, and suppose the rate of flow in any horizontal layer to

decrease with the depth of the layer below the surface of the

liquid, and to be slightly greater, therefore, in the layer CD than

in the layer AB. Now, imagine the flow to continue for one
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unit of time from the instant considered, and let ABCD, in

Fig. 144, represent the form of the plate at the end of this unit

of time. Since the rate" of flow in the layer CD is greater than

in the layer AB, the upper face CD of the plate advances in

unit time through a slightly greater distance than the lower

face AB and the plate thus becomes sheared into the form shown

in the figure. The shear thus produced in the plate in unit time

Fig. 143.

Fig. 144.

is evidently measured, as indicated in the figure, by the ratio

. That is, if v denote the difference in the velocities of
AJN

the upper and lower faces of the plate, and d the thickness

of the plate, the rate at which the plate is being sheared is

measured by T .

Now, the stress to which this continuous shearing is due is

the friction exerted by the adjacent liquid on the upper and

lower faces of the liquid plate. The liquid layer immediately

.above the upper face flows a little more quickly than that face,

and the viscous friction between the two liquid surfaces acts,
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therefore, on the surface of the plate in the direction of the flow.

Similarly, the liquid layer immediately below the lower face

Hows a little more slowly than that face, and the viscous friction

between the liquid surfaces acts, therefore, on the surface of the

plate in a direction opposite to the direction of flow. The liquid

plate is thus sheared by the opposing frictional stresses on its

upper and lower faces
;

these stresses act parallel to the faces of

the plate, and if the plate is very thin then the liquid friction

per unit area of surface may be taken to be the same for both

faces.

If this frictional stress on the faces of the liquid plate

v
be denoted by F, the ratio of the stress, F, to

,
the shear

produced in the plate per unit time is taken as a measure of the

viscosity of the liquid, as is called the coefficient of viscosity for the

liquid. That is, if m denote the viscosity of the liquid, we have

7 - F^
m = F /-=-.-.

/ d c

It is to be noted that the stress F exists only while the shearing

is going on in the liquid, so that m must be defined in relation to

the shearing strain per unit time*

When a liquid which wets glass flows through a glass tube of

fine bore a stationary film of liquid adheres to the tube, and the

rate of flow, which is zero for this film, increases from zero at

the outer surface of the stream to a maximum at the axis of the

stream. It follows from this that any infinitely thin cylindrical

shell of the liquid stream flows a little more rapidlv than the

* In comparing m, the coefficient of viscosity for a liquid, with n, the

modulus of simple rigidity for a solid, it is to be noted that the frictional

stress between the layers of the liquid while shearing is going on con-

tinuously corresponds to the elastic stress set up between the layers of the

solid in opposition to the existence of any given shear. Hence, in defining

m, the shear produced per unit time must be taken for the shearing
strain ; whereas, in defining n, only the magnitude of the shear produced

by the applied stress lias to be considered.
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similar shell immediately surrounding it, and that there must,

therefore, be viscous friction between the two shells of liquid.

That is, the flow of tlfe liquid within any cylinder taken inside

the bore, and co-axial with it, is retarded by the viscous friction

of the liquid surrounding it, and the rate of flow of liquid

through the tube must, therefore, depend upon the viscosity of

the liquid. It can, in fact, be shown that the rate of flow under

given conditions through a given tube is inversely proportional to

the viscosity of the liquid, as defined above.

The viscosity of different liquids may, therefore, be compared

by comparing the times in which the same quantity of each

liquid flows through the same capillary tube under the same

conditions of flow.

It is a matter of common observation that a viscous fluid such

as glycerine becomes less viscous with rise of temperature, and

experiment shows that it is generally true for all liquids that

viscosity decreases as the temperature rises.

Approximate values of the coefficients of viscosity at C.

and 20 C. are given below for a few typical liquids :

T tmiirl



337

CHAPTEK XXI.

PROPERTIES OP LIQUIDS (Continued).

118. Surface Tension and Capillarity. Certain phe-

nomena, which may be observed at the boundary surface of a

mass of liquid, seem to indicate, and may be explained by

assuming, that the thin surface layer or skin which forms the

boundary surface of the liquid acts as a stretched membrane

under uniform tension in all directions.

Thus, if a large drop of oil is allowed to form on the surface

of water, it rests on the water as a lens-shaped mass, and the

surface of separation between it and the water is distinct and

clearly marked, just as it would be if each mass of liquid were

contained in a very thin elastic skin or membrane. In the same

way if a light object, such as a needle, is slightly greased and

placed very carefully on the surface of water, it will be supported

by the surface, just as it would be by a thin-stretched mem-

brane. The surface shows a slight depression at the point

where the object rests, and the weight of the object may be

supposed to be supported by the vertical components of the

surface tension round the edge of the depression.

When a small quantity of mercury is spilt on the table or on

the floor, it usually breaks up into a large number of small

globules, which are nearly spherical in form. This is readily

explained by supposing that the outer surface layer of each

globule is subject to uniform tension, and that it, therefore,

assumes a spherical form in which its surface area is a minimum.

The same effect may be exhibited in a striking way by one of

22



338 GENERAL PHYSICS.

the many beautiful experiments due to Plateau. If a quantity

of olive oil is passed gently from a pipette into a mixture of

water and alcohol of the same density as the oil, the effect of

gravity in preventing the formation of large drops is eliminated,

and the oil takes the form of a large spherical drop, separated

by a clearly marked boundary surface from the surrounding

liquid. A similar effect may be observed in the formation of

drops at the end of a glass rod or pipette which has been dipped

into a liquid. The forms which the drop assumes during its

formation, and the manner in which it breaks away from the

rod to which it is attached, are all consistent with the supposition

that the surface layer of the drop acts as a stretched membrane

under uniform tension in every direction.

The fact that the surface of a liquid behaves as if subject to

tension is further illustrated by the behaviour of liquid films.

When a soap bubble is blown from soap solution, the double

film which forms the wall of the bubble is extended by increasing

the pressure inside the bubble, and if this pressure is removed

the wall of the bubble contracts and drives out the air which

has been forced into it. That is, the bubble behaves as if it

were a very thin elastic membrane under uniform tension.

Numerous other experiments show that a liquid film always

behaves in this way. When a flat wire ring is dropped into

soap solution and withdrawn, a thin film of the solution will be

found stretched across it. If a loop of thread which has been

dipped in the solution is then placed gently on this film it will

retain any irregular form that may be given to it, but if the

film is broken at a point within the loop the portion of the film

between the wire ring and the loop at once contracts, and the

loop takes a circular form as the inner boundary of the film.

The tension which is thus supposed to exist in a very thin

layer or skin at any boundary surface of a liquid is called the

surface tension of the liquid. It is supposed to have the same

value for all directions in the surface, and is measured for any
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surface by the tension at right angles across unit length of a line

taken in any direction on the surface of the liquid. That is, the

surface tension is the tension in a strip of the surface film of

unit width, taken in any direction on the surface.

The magnitude of the surface tension at the boundary surface

of a liquid is found to depend upon the substance from which

the liquid is separated by the surface. Thus, the surface tension

of water at the boundary surface between water and air differs

from the surface tension of water at the boundary surface

between water and oil, or between water and glass.

It must be understood, too, that the surface tension of a liquid

for any boundary surface is not increased by extending the sur-

face. The surface film of a liquid cannot be stretched in the sense

that an elastic membrane is stretched
;

it may be extended by the

transfer of molecules from the deeper layers into the surface layer,

but the tension in the surface remains constant during the process

of extension. Thus, in the case of a soap bubble, the wall of the

bubble consists of an inner or outer surface film enclosing a very

thin layer of liquid between them
;

as the bubble is blown the

inner and outer films are extended at the expense of the liquid

between them until all their liquid is transferred to the surface

films and the bubble bursts. The films thus remain in the same

state and subject to the same tension throughout the process of

extension.

It will be seen from what has been said that if a strip of

liquid surface of width (a) is extended in length by a distance

(6), the work done during the process of extension is given by

T(ab), where T denotes the surface tension for the liquid surface.

That is, the work done in extending a liquid surface by an area

(ab) is T(ak), or, in general, the work done in extending a liquid

surface by an area A is TA, where T denotes the surface tension

of the surface. It follows from this that the energy of a liquid

surface per unit of area is numerically equal to its surface tension,

.and that the energy which a liquid possesses as surface energy
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increases when the surface area is extended, and decreases

when the surface ajea is diminished. The energy which a

liquid surface possesses in virtue of its surface tension is called

the surface energy of the surface.

The interesting phenomena which are usually considered

under the head of capillarity or capillary action are due also

to surface tension. When a rod or plate of any solid is dipped
into a liquid which does not wet the solid, it is noticed that the

liquid surface is convex and slightly depressed round the line of

contact with the solid. Thus, if a rod or strip of glass is dipped

into mercury, the liquid surface round the line of contact takes

the form shown in section in Fig. 145. If the mercury is

Fig. 145. Fig. 146.

contained in a glass vessel the same effect may also be observed

round the line of contact of the mercury surface with the glass.

Further, if one end of a capillary glass tube, about 1 mm. or

less in bore, and open at both ends, is dipped into mercury so

that a column of mercury enters the bore, it is found that the

surface of the mercury column is not only convex, owing to the

convex curvature round the line of contact with the glass, but

that it stands at a lower level than the general surface of the

mercury outside the tube. This effect is shown in section in

Fig. 146; it will be seen that the mercury surface is convex

and slightly depressed round the lines of contact of the surface

with the glass inside the tube, outside the tube, and round the
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inner surface of the containing vessel, and also that the level of

the mercury inside the tube is slightly lower than the general

level outside. If tubes of different bores are used in this

Experiment it is found, too, that the capillary depression inside

the tube increases as the bore diminishes, and measurement

shows that it is inversely proportional to the diameter of the

bore of the tube.

Experiment 30. Take three or four lengths of capillary glass

tubing of different bores, place them in succession with one end

dipping in mercury, and measure the capillary depression in each

case. This may be done by bringing the tube close to the side of the

glass vessel containing the mercury ; the depression of the thread of

mercury in the tube can then be measured directly with a scale

outside the tube, or read off on a scale attached to the tubing.

Measure also the diameter of the bore of each tube and establish

the relation between the capillary depression and the diameter.

Again, when a rod or plate of a solid is dipped into a liquid

which wets the solid, it is seen that the liquid surface is con-

Fig. 147. Fig. 148.

<jave and slightly elevated round the line of contact with the

solid. Thus, if a rod or strip of clean glass is dipped into

water, the liquid surface round the line of contact takes the

form shown in section in Fig. 147. The same concave curva-

ture and elevation of the surface may also be observed round the

line of contact of the water with the vessel containing it.
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In the same way if one end of a capillary glass tube open at

both ends is dipped into water, or any other liquid which wets-

glass, so that liquid enters the bore, it is found that the

surface of the liquid in the tube is not only concave, owing to

the concave curvature round the line of contact with the inner

wall of the tube, but that it stands, as shown in Fig. 148, at a

higher level than the general level of the liquid outside the

tube. If tubes of different bores are tried it is found that the

capillary elevation in the tube increases as the bore diminishes,

and measurement shows that it is inversely proportional to the

diameter of the bore. It is found also, as might be expected,

that the capillary elevation in a tube of given bore is different

for different liquids.

Experiment 31. Take three or four lengths of capillary glass

tubing of different bores, attach each in turn with small rubber bands

to a thermometer stem, or a strip of glass or porcelain with a milli-

metre scale engraved on it, and place it standing vertically with one

end dipping in water. Then note and measure the capillary elevation

of the water in each tube. Measure also the diameter of the bore of

each tube, and establish the relation between the capillary elevation

and the diameter of the bore.

Show also, by using different liquids (water and alcohol), that the

capillary elevation is different for different liquids in the same tube.

In these experiments, and in all surface tension experiments, it is

necessary to make sure that the tubes, liquids, and containing vessel

are chemically clean to begin with, and are kept clean throughout the

experiment. The liquid, for example, must not be touched with the

fingers, for if it is so touched the surface becomes greasy, and its

surface tension alters in magnitude.

The phenomena due to surface tension in capillary tubes and

other similar and related phenomena constitute what is known

as capillarity or capillary action.

The explanation of the manner in which capillary depression

and capillary elevation are associated with surface tension may
be given in the following way.
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A I R

Consider first the case in which the liquid does not wet the

solid, and in which the liquid surface is convex and depressed

along the line of contact of the liquid and the solid. It will be

seen that the line of contact of the liquid and the solid is really

the boundary line between the liquid surface in contact with the

air, and the liquid surface in contact with the solid. Thus, in

Fig. 149, the surface of the liquid is in contact with the solid

along DA, and in contact with air along ABC, and the point A
is evidently a point on the boundary
line between these two surfaces. It

may also be assumed that the surface

tension in the liquid-solid surface DA
will differ from the surface tension in

the liquid-air surface ABC. It follows,

therefore, as a condition of equilibrium

of the surface at A, that the two

surfaces DA and ABC must meet at an

angle, and if the surface tension of the

liquid-solid surface, DA, is less than

the surface tension of the liquid-air

surface, it will be seen that this angle, DAE, must be an obtuse

angle as in the figure. For. if T denote the surface tension of

the surface ABC, and T' the surface tension of the surface

DA, it is evident from the figure that for equilibrium in a

vertical direction at A we must have

T cos a T',

where a denotes the angle EAF, or the supplement to the angle

DAE, at which the two surfaces meet. This relation shows that

if T' is less than T, the angle DAE must be obtuse, and that the

surface ABC must necessarily assume a convex curvature in

joining the surface DA at this angle.

This angle, DAE, is known as the angle of contact of the

liquid with the solid, although it might be more pertinently
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defined as the angle of equilibrium for the two liquid surfaces

meeting at the point A.

The depression of the liquid below the general level at all

points where the surface is curved, is explained by the fact that

in the case of a surface under tension the pressure on the con-

cave side of the surface is greater than the pressure on the

convex side by an amount which depends on the tension and

curvature of the surface. This excess of pressure on the con-

cave side of a surface under tension is the pressure exerted

inwards by the surface in virtue of its tension and curvature,

T
and can be shown to be equal to for a cylindrical surface, of

Jtx

2T
tension T and radius R, and to -=r- for a spherical surface of

Jx.

radius It. The pressure exerted, for example, by a flat elastic

T
band on a cylinder which it encircles is

,
where T denotes

xC

the tension per unit width of the band, and R the radius of the

cylinder. Similarly, the pressure of the air inside a soap bubble

is 2(
J greater than the external pressure, where T denotes

the surface tension of the liquid films, and R the radius of the

bubble.

The pressure at any point in the liquid immediately below the

convex surface ABC (Fig. 149), is thus greater than the

atmospheric pressure at a point immediately above the surface,

and this excess of pressure at any point in the surface com-

pensates exactly for the loss of hydrostatic pressure due to the

capillary depression of the surface at that point.

This result may readily be applied to determine the relation

between the surface tension of a liquid, and the capillary

depression of that liquid in a capillary tube of material which is

not wetted by the liquid. Thus, if the capillary depression in a

capillary tube of radius r is denoted by A, and if the radius of
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curvature of the approximately spherical convex surface of the

2T
column of liquid in the tube is denoted by K, we have as

the pressure due to the tension and curvature of this surface,

and hdg, where d denotes the density of the liquid, as the loss of

hydrostatic pressure due to the capillary depression. We may,

therefore, write

9T

f-14
But, if a denote the angle of contact of the liquid with the

Fig. 150.

solid, and r the radius of the bore of the tube, it can readily be

rf

seen from Fig. 150 that - = cos a, or R = We,

therefore, have

or

2T cos a- =
hdff,

r

2T cos a

rdfi

This result shows, as stated above, that the capillary

depression, h, for a given liquid, is inversely proportional to

radius of the bore of the tube ; it also shows that the value of h
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is different for different liquids, and is, for a tube of given bore

and material, directly proportional
to T, the surface tension of

the liquid-air surface, and inversely proportional to d, the density

of the liquid.

This result may be obtained, perhaps more simply, by suppos-

ing the column of liquid in the tube to be held down by the

tension in the cylindrical liquid- solid surface acting downwards

round the edge of the convex liquid-air

surface which covers the upper end of

the column. For, if T' denote the

surface tension of this surface, we

have

2?rrT' = irr~hdg,

2T' =
rhdff,

A I R

or
, 2T'
h =

r-
rdg

p^ 15 j
Now T, as explained above, is related

to T and a in the foregoing notation by
the relation T' = T cos a. We may, therefore, write

/, =
2T cos q

rdg

as given above.

Consider next the case in which the liquid wets the solid, and

in which the liquid surface is concave and elevated along the

line of contact of the liquid and the solid. In this case it will

be seen, as shown in Fig. 151, that the angle of contact DAE is

acute, and that, as a condition of equilibrium at the point A in

the liquid, the force exerted on a molecule at A by the surface

films in contact with the wall of the tube along DAF must act

vertically upwards. This condition will be realised, assuming

that, since the liquid wets the tube, and since the air in the tube

above the liquid column is saturated with the vapour of the

liquid, a surface film must extend up the tube to a considerable
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height above the point A. This film separates the vapour-

saturated air in the tube from the solid wall, and may be called

the air-solid surface. Then, if T' denote the tension in this air-

solid surface acting along AF, and T" the tension in the liquid-

solid surface acting along AD, the force exerted on a molecule at

A by the surface films in contact with the wall of the tube along

DAF will be T' T", acting vertically upwards if T' be supposed

to be greater than T".

If these assumptions be made, and if T denote the surface

tension of the liquid-air surface ABC, and a the angle of contact,

we have, as the condition of equilibrium in a vertical direction

at A. that

T cos a = T - T".

When the liquid wets the tube the value of a is always very

small and is generally taken to be of zero value.

The capillary elevation which accompanies the concave

curvature of the liquid surface along the line of contact of

the liquid and the solid when the liquid wets the solid, is

explained in exactly the same way as the capillary depression

which accompanies the convex curvature of the surface along

the line of contact when the solid is not wetted by the liquid.

Thus, at any point in the concave surface ABC (Fig. 151), the

pressure immediately below the surface is less than the atmo-

spheric pressure immediately above the surface by an amount

2T
,
where T denotes the surface tension of the surface and

K
K the radius of curvature at the point considered, and this

difference of pressure at any point in the surface compensates

exactly for the loss of hydrostatic pressure due to the capillary

depression of the surface at that point.

The relation between the surface tension of a liquid and the

capillary elevation of that liquid in a capillary tube of material

which is wetted by the liquid, may also be determined by applying
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this result as in the case of the capillary depression of a liquid in

a capillary tube which is not wetted by the liquid. Thus, if the

capillary elevation of the liquid in a tube of radius r is denoted

by h, and if the radius of curvature of the upper surface of the

2T
volume of liquid in the tube is denoted by E, we get

- - as
IV

the pressure due to the tension and curvature of the surface, and

hdg, where d denotes the density of the liquid, as the gain of

hydrostatic pressure due to the capillary elevation. We, there-

fore, have

" :

-'*4

and li = - -.as explained above, where a denotes the angle
cos a

of contact, we have

2T cos a =
lidg,

2T cos a
or

If we now assume a = we get

/* = -
7

.

rdg

This result is identical with that obtained above for capillary

depression. It shows that h is inversely proportional to r, the

radius of the bore of the tube, directly proportional to T, the

surface tension of the liquid-air surface, and inversely pro-

portional to d, the density of the liquid.

The result may also be obtained by supposing the column of

liquid to be held up in the tube by the attachment of the

concave surface on its free upper surface to the wall of the tube.

For if T denote the surface tension of this surface we have
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27rrT cos a =
nr^Jidg,

2T cos a =
rhdg,

. 2T cos a
7* = j ,

rdg

or, if a = we get

A ="
rdg

as given above.

The surface condition here dealt with as surface tension is

generally considered to be the result of the molecular forces

acting on the molecules of the liquid at the boundary surface of

the liquid.

A molecule in the interior of the liquid is subject to the

action of the molecules surrounding it within a certain small

range, and as it is thus acted on equally in all directions the

resultant molecular force acting on it is of zero magnitude. A
molecule at or near the boundary surface of the liquid is subject,

however, on one side, to the action of the molecules of the

liquid within molecular-range, and on the other side to the

molecules of the material adjacent to the liquid surface; the

resultant molecular force acting on the molecule is, therefore, not

in general of zero value, and the constraint thus imposed

on the molecules in a thin surface layer of the liquid constitutes

what is called surface tension.

119. Diffusion in Liquids. When a solution of a salt in

any solvent is not of uniform concentration throughout its mass

molecules of the dissolved substance pass from points of greater

to points of less concentration, and molecules of the solvent

pass from points of less to points of greater concentration until

the solution is of uniform concentration at all points.

This systematic migration of the molecules from point to point

in the liquid is not accompanied by any perceptible motion

in the liquid, and takes place in any direction quite irrespective

of the action of gravity.
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For example, if a concentrated solution of copper sulphate in

water is placed in a beaker, and water is poured very gently

down the sides of the beaker on the surface of the solution, the

horizontal surface of separation between the water and the

solution is at first quite sharp and distinct, but after a time

molecules of the dissolved salt pass upwards into the water, and

molecules of water pass downwards into the solution. The blue

colour, indicating the presence of copper sulphate in solution,

thus extends upwards into the water, becoming fainter and

fainter as the distance above the initial plane of separation

increases, and the blue colour of the concentrated solution

becomes fainter as it is diluted by the water which passes down

into it.

This process of mixing by molecular motion without the aid

of currents in the solution is known as diffusion.

The process is a very slow and gradual one in liquids, unless

assisted by mechanical mixing or stirring. In the case just

considered, for example, the process might take many weeks or

even years (according to the depth of the layers of liquid) to

reach completion.

Diffusion in liquids was first studied experimentally by
Graham. He was able to compare the diffusitivity of different

salts in water as a solvent by filling a wide-mouthed bottle with

a solution of the salt to be tested, and then placing the bottle to

stand on the bottom of a large beaker full of water. The salt

diffused from the solution in the bottle into the surrounding

water, and the quantity which thus diffused out of the bottle in

a given time was determined for a number of different salts and

for different concentrations of the same salt. Graham found

that for solutions of the same concentration the rate of diffusion

was different for different substances, but that for solutions

of the same substance the rate was proportional to the con-

centration.

The quantitative study of diffusion was not, however, put on
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a satisfactory basis until the general method due to Fourier* was

applied to the process by Fick. By this method a definite

coefficient of diffusion is defined, and the value of this co-

efficient under given conditions can be determined experimentally

for any substance.

Imagine a solution in which diffusion is going on to be

arranged in plane parallel layers in which the concentration! is

the same at all points in any one layer, but differs from layer to

layer, and let 8 denote the difference in concentration for any
two adjacent layers a very small distance x apart. The gradient

of concentration from one layer to the other will thus be denoted

g
by ,

and the quantity of the dissolved substance, which diffuses
v

across unit area in unit time from layer to layer, is taken to

be proportional to this gradient, and is, therefore, denoted by
g

A', where k is a constant. This constant, /,-,
is the coefficient of

$

diffusion for the dissolved substance. Experiment shows, how-

ever, that the value of k is not strictly a constant for any

substance, but that it varies to some extent with the concentra-

tion of the solution.

The general method of determining k experimentally for any
substance cannot here be explained. It may be noticed, how-

ever, that in order to make a determination it is necessary

to arrange that the diffusion shall take place between parallel

plane layers of uniform density; and, also, to be able to

note, quantitatively, the changes of concentration that take place

in the different layers as the process of diffusion goes on. This

has been done in various ways ;
the simplest method of

experiment is that adopted by Lord Kelvin. The solution was

* This method is the one adopted in defining the absolute thermal

conductivity of a substance. (See Part iv. on Heat.)

t The concentration may, for this purpose, be defined as the mass of the

dissolved substance per unit volume of the solution.
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placed at the bottom of a tall cylindrical vessel and allowed to

diffuse upwards through an overlying layer of the solvent,.

as explained above, fn order to follow the process of diffusion

a number of small beads, constructed to float in solutions of

known densities intermediate between the density of the solvent

and the initial density of the solution, were placed in the vessel.

At first these beads floated all together at the surface of

separation of the solvent and the solution, but as diffusion went

on the lighter beads rose, and the heavier beads sank, each bead

taking up its position in a layer of the density it was constructed

to indicate. The density, and therefore the concentration in

layers of known position, could thus be observed from time

to time during the progress of the diffusion, and the data

necessary for the determination of the coefficient of diffusion

could be deduced from these observations. It was found that

the value of the coefficient for a given substance depends upon
the solvent used and also, to some extent, upon the concentra-

tion of the solution.

120. Osmosis. Graham found in his experiments on dif-

fusion in liquids that certain substances, such as mineral acids

and salts, diffused more or less readily ; whilst other substances,

such as gum, starch, gelatin, and other similar substances pos-

sessed little or no power of diffusion in solution. The former

class of substances he called crystalloids, because they are, in

most cases, capable of crystallisation, and the latter, which are

incapable of crystallisation, he called colloids.

Graham found, also, that a colloid substance in combination

with a very small quantity of water readily forms a solid or

semi-solid jelly through which water and crystalloid substances

in solution readily pass by diffusion, but which is quite imper-

vious to other colloid substances. He found, too, that an animal

membrane, such as a piece of bladder, and the "parchment"
obtained by treating paper or cellulose with sulphuric acid

behaved like a thin film of colloid jelly, and while it allowed
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water and other liquids and crystalloids in solution to pass

through it freely, it was quite impervious to all colloid

substances.

This passage of liquids and substances in solution through
"
colloid

"
films or membranes is called osmosis. Graham

applied the process as a means of separating a crystalloid from

a colloid substance. The mixture of the two substances in

solution is placed in a cylindrical vessel, the bottom of which is

formed by a sheet of parchment paper, and the vessel is

immersed to about half its depth in water
;
the crystalloid then

diffuses through the parchment into the water, and the colloid

is left behind in the vessel. This method of separating a

crystalloid from a colloid by osmosis is known as dialysis.

It has been found that certain membranes through which

osmosis can take place exercise a kind of selective power in

their action, and are permeable to certain substances, but quite

impermeable to others. A piece of bladder, for example, is

permeable to water, but impermeable to alcohol, so that if a

bladder containing alcohol is immersed in water, the water

enters the bladder and gradually distends it to bursting point.

A very important case of this selective action of the

membrane is that in which the membrane is permeable to the

solvent, but impermeable to the dissolved substance in certain

solutions. A membrane possessing this property is said to be

semi-permeable, and it is found that certain vegetable cell walls

and certain films which can be prepared artificially do possess

this property in relation to certain solutions. Thus, a film of

copper ferrocyanide forms a semi-permeable membrane of this

kind for certain solutions, such as a solution of sugar. If a

porous pot is filled with a solution of copper sulphate and

immersed in a solution of potassium ferrocyanide the two solu-

tions penetrate the wall of the pot, and at all points where they

meet in the thickness of a wall thin films of copper ferrocyanide

are formed across the narrow channels which penetrate the wall.

23
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Although these films are very thin and delicate they form, when

deposited in this way in the wall of a porous vessel, a practically

continuous membrane capable of withstanding considerable

pressure. The solutions used in preparing the membrane are

removed by soaking the vessel in water, and, when prepared in

this way, the vessel is found to act effectively as a continuous

semi-permeable membrane.

If a solution of sugar in water is placed in a porous vessel

prepared in this way, and the vessel is immersed to half its

depth in water, it is found that water passes freely

into the solution, but that no sugar passes out into

the water. Further, if the vessel is filled with the

solution and closed by a rubber stopper or well

paraffined cork fitted with a vertical tube, as shown

in Fig. 152, it is found that as water enters the

solution through the semi-permeable wall of the

vessel the solution rises in the vertical tube, and

that water continues to enter even against the back

pressure due to the column of solution in the tube.

Experiment shows, however, that when this back

pressure reaches a certain value, which depends for

a given solution upon the concentration of the

solution, the water ceases to enter, and equilibrium

is established between the solution inside the vessel and the

water outside. The value of the back pressure at which this

state of equilibrium is reached is called the osmotic pressure

of the solution, and is considered to be the measure of the

molecular pressure exerted by the dissolved substance in the

solution.

Fig. 152.
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CHAPTER XXII.

PROPERTIES OF GASES.

121. Measurement of the Pressure of a Gas. It has been

explained previously that the pressure of a gas is the same at

all points in the gas, and the same in all directions at every

point. It has also been explained that the pressure is to be

measured by the pressure exerted by the gas per unit of area of

any surface with which it is in contact.

In practice the pressure of a gas is generally measured by

observing the height of the column of liquid (usually mercury),

which exerts a pressure equal to that of the gas. The pressure

of a gas in the flask F may, for example, be measured by

connecting it, as shown in Fig. 153, with the U-tube M, which

is about half filled with mercury or some other suitable liquid.

The air in the flask exerts pressure on the surface of the mercury
at A, and the atmosphere presses on the surface at B. If the

pressure of the air in the flask is equal to the atmospheric

pressure, the surfaces of the mercury at A and B will be at the

same level as in Fig. 153
; if, however, the pressure of the air is

.greater than the atmospheric pressure, the mercury will be

forced outwards from the flask until a balance is obtained, and

the level at B will be higher than the level at A as in Fig. 154
;

similarly, if the pressure of the air is less than the atmospheric

pressure, the mercury will be forced inwards until a balance is

obtained, and the level at B will be lower than the level at A as

in Fig. 155.

In Fig. 154 it will be seen, as explained in Art. 113, that the
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pressure on the mercury surface at A is equal to the pressure in>

the other limb of the tuj)e at a point A' at the same level as Ar

and that the pressure of the air in the flask is, therefore, equal

to the atmospheric pressure at B plus the pressure due to the

mercury column A'B. Similarly, in Fig. 155 the atmospheric

pressure on the mercury surface at B is equal to the pressure in

the other limb at a point B' at the same level as B, and that

n
M M

Fig. 153. Fig. 154. Fig. 155.

the pressure of the air in the flask is, therefore, equal to the

atmospheric pressure minus the pressure due to the mercury
column AB'.

It thus appears that the pressure of the air in the flask is, in

the general case, equal to the atmospheric pressure, plus or minus

the pressure due to a column of mercury whose length is equal

to the difference in the levels of the mercury at A and B. That
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is, if P denote the atmospheric pressure, p the pressure due to

the column of mercury of height equal to the difference of the

levels at A and B, and P' the pressure of the air in the flask,

then P' = P p. If the atmospheric pressure P is known in

dynes per square centimetre, the pressure denoted by p must be

similarly expressed by means of the relation hdg (Art. 108),

where h is the height of the column in cms., d the density of the

mercury in grammes per cub. cm., and g the acceleration due to

gravity at the place of observation.

If the atmospheric pressure is known to be equal to the

pressure due to a column of mercury of height H, and the

difference of the mercury levels at A and B is denoted by Ti,

then the pressure of the air in the flask is conveniently expressed

as that due to a column of mercury of height (H h) as the

case may be.

It must be noted, however, that if the pressure of a gas is

expressed in terms of the height of a column of mercury (or

other liquid), the density of the mercury must be specified,

usually by giving its temperature, and the value of g, the

acceleration due to gravity at the place of observation, must be

known.

A U-tube filled with mercury, and constructed for the purpose

of measuring pressure in the manner indicated in Fig. 153, is

generally called a manometer or pressure gauge.

122. The Atmospheric Pressure: The Barometer.

The atmosphere surrounds the earth as a spherical layer of air

which extends, as an appreciable atmosphere, to a height of from

two hundred to three hundred miles above the surface of the

earth. We thus live at the surface of the earth at the bottom

of a deep sea of air, and subject to the pressure produced in the

air surrounding us by the weight of the overlying air. This

pressure in the air around us is called the atmospheric pressure.

We. are not sensible of the pressure existing in the air around

us, because, at every point, it is exerted equally in all directions.
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That is, the air exerts pressure on any surface with which it

is in contact in a direction at right angles to the surface, and

the magnitude of this pressure at any point is the same for all

positions of the surface. It follows from this, as in Art. 109, by
the principle of Archimedes, that the resultant effect of the air

pressure on a body completely surrounded by air is an upthrust

equal to the weight of the displaced air, and acting vertically

upwards on the body through the centre of gravity of the dis-

placed air. At the same time, the body being subject to a

normal pressure at all points on its surface, is compressed to an

extent which depends upon its elasticity of volume. Hence, if

the hand is held out in the air with the palm horizontal, it is

not forced downwards by the downward air pressure on the

upper surface, or upwards by the upward pressure on the lower

surface, but experiences merely a very small upward thrust

equal to the weight of the air which it displaces. At the same

time the tissue and blood-vessels of the hand are subject to the

compressing or supporting effect of the pressure to which it is

exposed. Both these effects are inseparable from the conditions

of life at the surface of the earth, and we are not sensible of

them because we are always subject to them. The upthrust

due to the buoyancy of the air is too small to have any special

relation to the structure of the body, but the supporting effect

of the air pressure on the tissues of the body is one of the

conditions to which the structure of the body is specially

adapted, and which cannot be altered without danger to life.

In the same way if a thin glass flask is exposed to the air it is not

crushed by the pressure of the air on it. The outward pressure

of the air inside it on its inner surface practically balances the

inward pressure of the external air on the outer surface, and the

final result is merely that the glass of the flask is very slightly

compressed, and that its pressure on the table on which it stands

is less than its true weight by the weight of the air which it

displaces.
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The fact that the air around us does exert a very considerable

pressure on all surfaces with which it is in contact may be

demonstrated in a simple and striking manner by the familiar

experiment described below. The experiments with an air

pump, described in Arts. 128, 129, also illustrate this fact in

an interesting way.

Experiment 32. Get a cylindrical flask made of thin tin plate for

the purpose of this experiment. Put a small quantity of water in the

flask, and boil the water until all the air in the flask is expelled by
the steam. Then, while the water is still boiling, cork up the flask

with a good, well-fitting cork, and stand it in a suitable trough to

cool it by pouring cold water over it.

As the flask cools, the steam inside it condenses, and a partial

vacuum is produced inside the flask. The walls of the flask are now

subject to the atmospheric pressure externally, and to a pressure
diminished almost to zero value internally. They are not strong

enough to withstand this excess of external pressure, and are

consequently crushed violently inwards soon after the cooling begins.
A thin glass flask may be broken in the same way, or, if the flask is

stout enough to stand the pressure, it will be found that the cork is

forced inwards so as to fit very tightly into the neck of the flask.

The pressure in the air at any level being due to the weight

of the air above this level must evidently be greatest at the

surface of the earth, and must decrease from layer to layer as

the height above the surface increases.

It will be understood from . this that, as the air is a gas, and

easily compressible under pressure, the density of the air is

greatest at the surface of the earth, where the pressure is

greatest, and decreases as the height above the surface increases,

and the pressure diminishes until, at a height of from two

hundred to three hundred miles above the sea level, the density

and pressure become inappreciably small. .

It follows from this that the pressure of the air at any level

could not be found by applying the relation p = hdg, as

explained in Art. 108, even if the value of h were definite and

accurately known, for the value of d varies from layer to layer,
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and is, therefore, not a constant. The value of g, also, varies

from layer to layer, fof it decreases as the height above the sea

level increases. For the same reasons it will be seen that the

difference of pressure for a vertical difference of level denoted by h

is not given by hdg. If, however, h is small, so that both d and

<j ma}7 be considered to have practically constant values at all

points in it, this formula may be applied to obtain the difference

of pressure corresponding to the small difference of level

considered.

Example. Find the difference in the pressure of the air at two

points whose vertical difference of level is 10 metres, taking the

mean density of the air between the points to be 0'0012 gramme per
cub. cm., and the value of g to be 980 cms. per sec. per sec.

Here, if p denote the difference in the air pressures at the two

points we have

P - hdg,

and, from the given data, the values of h, d, and g in C.G.S. units are

h = 100, d = 0-0012, and g = 980.

We, therefore, have

p = 100 x 0-0012 x 980,

or p = 117-6.

That is, the difference in the pressure of the air at the two points is

117'6 dynes per sq. cm.

The existence of the atmospheric pressure, and the manner in

which it may be measured at any point in the air, is indicated

by the following historical experiment which is due to Toricelli,

and is generally known as Toricelli's experiment.

A long glass tube, closed at one end, about a metre long and

a centimetre in diameter, is filled with clean dry mercury and

inverted in a small cistern of mercury. When thus inverted

and fixed in a vertical position, in the manner shown in Fig. 156,

it is found that the mercury in the tube falls until the height of

the column in the tube is about 76 cms. above the level of the

mercury in the cistern. The pressure due to this column of
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mercury evidently measures the atmospheric pressure at the

surface of the mercury in the cistern. The pressure at any

point A, inside the tube at the level of the surface of the mercury

in the cistern, is the same as at any point at the same level outside

the tube, and is, therefore, equal to the atmospheric pressure at

the surface of the mercury. The pressure at the point A is,

however, equal also to the pressure in the space BC plus the

pressure due to the column AB of mercury. Now,
if the experiment has been properly performed, the

space BC above the column of mercury in the tube

is devoid of air or other matter, and is, therefore,

a vacuum in which the pressure is of zero value.*

It follows, therefore, that the atmospheric pressure

at the surface of the mercury in the cistern is equal

to the pressure due to the column of mercury AB,
which stands in the tube.

Hence, if h denote the height of this column, d

the density of the mercury, and g the value of the

acceleration due to gravity at the place of the ex-

periment, the atmospheric pressure at that place is

measured by hdg in units of force per unit of area.

Instead of expressing the atmospheric pressure in

this way, in units of force per unit area, it is some-

times convenient to express it as the pressure due to

a column of mercury of specified height, in centi-

metres or inches, the height so specified being the

height of the column AB, which balances the atmospheric

pressure, as in the foregoing experiment.

It must be carefully noted that the explanation given above

turns on the fact that the pressure (per unit of area) in the

* This space, usually called the Toricellian vacuum (see Art. 53 in

Part iv. on Heat), contains mercury vapour, and is, therefore, not a com-

plete vacuum. At ordinary temperatures, however, the pressure exerted

by the mercury vapour is negligible.

Fig. 156.
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mercury inside the tube at the point A is equal, on the one hand,

to the atmospheric pressure (per unit of area) at the surface of

the mercury, and, on the other hand, to the pressure (per unit

of area) due to the column of mercury AB.

It follows, therefore, since pressure per unit area only has to

be considered, that the height of the column AB is quite inde-

pendent of the extent of the surface of the mercury in the

cistern, and also of the form and area of the cross-section of

the tube.

The simple apparatus of Toricelli's experiment constitutes

a simple form of barometer or instrument for measuring the

atmospheric pressure.

In order to obtain an accurate measure of the pressure with

this apparatus, or with any similar apparatus, it is, however,

essential riot only that the mercury should be clean and dry,

but also that the mercury and the tube should be quite free

from air. For this purpose it is necessary in filling the tube

to boil the mercury in it until every trace of air is expelled. It

is only by boiling the mercury in the tube that the film of

air adhering to the walls of the tube can be completely removed.

A form of barometer, which is more convenient and portable

than the tube and cistern form of Toricelli's experiment, is the

siphon barometer shown in Fig. 157. The open end of the

tube is bent upwards, as shown in the figure, so that the short,

open limb, AB, takes the place of the cistern in Toricelli's

apparatus. The height of the column of mercury, which

measures the atmospheric pressure, is given in this form of

barometer by the difference of the levels of the mercury at

A and C in the open and closed limbs of the tube. This

difference of level can be read off on a scale engraved on the

tube, or on a wood or metal scale attached to the board on which

the barometer tube is mounted.

The common dial form of the mercury barometer, the weather-

glass in general use, is a form of siphon barometer. The
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mercury tube is set up in the long rectangular space at the back

of the instrument. The indicator on the dial-plate on the front

of the instrument is controlled by the arrangement shown

in Fig. 158. The small pulley wheel W is mounted on the

same axis as the indicator, and two small glass weights are

slung by a thread over this wheel. One of these weights floats

in the mercury in the open limb of the barometer tube, and the

other serves as a counterpoise to the first. In this way, as

B

Fig. 157. Fig. 158.

the mercury in the tube rises and falls, the wheel is made

to revolve backwards and forwards by the thread, and the

indicator, after once being correctly set, is made to indicate the

height of the barometer on the dial-scale.

The most convenient form of mercury barometer for general

use in accurate work is, however, the form due to Fortin,

and known generally as Fortin' s barometer.
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This barometer is a tube and cistern barometer, similar to

Toricelli's "simple barometer," but constructed so as to be

readily portable, and provided with special appliances for

the accurate measurement of the height of the barometric

column of mercury.

The usual arrangement of the cistern and lower part of the

tube of the instrument is shown in Fig. 159. The cistern is

formed by the glass cylinder GGGG, the boxwood ring BB,
which fits into the bottom of this cylinder, and the buckskin

bag L, which closes the cistern below. This bag is tied

securely round the boxwood ring XX, which screws into the

ring BB, as shown in the figure ;
it is also provided with a small

boxwood button, which rests on the tip of the screw S. The

bottom of the cistern can thus be unmounted at any time by

screwing it out of the ring BB which carries it, and its capacity

can be decreased or increased by screwing the screw S up or down.

This cistern is enclosed in an outer metal case, which holds it

together, in the manner indicated in the figure, and allows

the surface of the mercury to be seen through the glass cylinder

which forms the upper part of the cistern. The screw S works

through the bottom of this outer case, and the barometer

tube, drawn out to a point, as shown in the figure, fits through a

boxwood collar, CC, in the cover. The tube is attached to this

collar by a strip of buckskin tied to the tube and the collar
;

this strip of leather does not prevent free access to the air. but

it prevents the escape of the mercury from the cistern.

In order to fix a definite, constant level, to which the surface

of the mercury in the cistern can always be adjusted, a small

ivory peg V is fitted through the cover of the outer case. The

lower pointed tip of this peg marks the zero of the scale

on which the height of the barometric column is read, and

the surface of the mercury in the cistern must always be

adjusted to touch this tip when a reading is taken. This is

readily done by screwing the setting-screw S up or down until
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the tip of the peg and its image, seen by reflection at the surface

of the mercury in the cistern, are seen to be coincident.

The tube of the instrument is surrounded, for protection, by
an outer brass tube, indicated in dotted

outline in Fig. 159. This outer tube

extends to the top of the barometer tuber

but in its upper part, at the level of the

mercury column in the inner tube, two

rectangular slits, about 20 cms. long, are

Fig. 159. Fig. 160.

cut diametrically opposite each other and parallel to the length

of the tube. This part of the tube is shown in Fig. 160. The



top of the mercury column in the

inner tube is clearly seen through

these slits, and the height of the

column is measured by the scale

engraved on the outer tube along

the edge of the front slit. This

measurement is made by means of

the vernier V, which can be moved

up and down in the rectangular

space cut in the tube by a rack and

pinion movement worked by the

screw S. The vernier is adjusted

by this screw until the line of sight

through its lower edges, front and

back, touches the top of the mer-

cury column. The height of the

column above the surface of the

mercury in the cistern when ad-

justed to the zero of the scale, as

explained above, can then be read

off in the usual way. If the scale

is in inches it is usually divided

into twentieths of an inch, and the

vernier constructed to read to one-

twenty-fifth of a scale division, or

to a five-hundreth of an inch
;

if in

centimetres it is usually divided into

millimetres, and the vernier made to

read to one-tenth or one-twentieth

of a millimetre.

A good form of standard Fortin

barometer is shown in Fig. 161,

enclosed in an outer glass case.

When the height of the baro-

Fig. 161,
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metric column, or the height of the barometer, as it is usually called,

is accurately measured in this way by any good form of mercury

barometer, it is subject to certain important corrections or reduc-

tions before it can be taken as the measure of the atmospheric

pressure at the place of observation.

In the first place the effect of capillarity is evidently to

depress the column of mercury in the tube, and so to reduce

the height of the column below the height which is equivalent

hydrostatically to the atmospheric pressure. This effect is,

however, noticeable only in tubes of narrow bore, and may be

neglected in tubes of wide bore, such as are used in standard

barometers.

In tubes of narrower bore (less than 2 cms.) the necessary

correction is best determined once for all by comparing the

reading of the instrument with the corresponding reading on a

standard barometer. This correction must in all cases be added

to the observed height.*

The observed height is affected also by an error due to the

variation of the length of the scale with change of temperature.

The scale is usually constructed so that its divisions are correct

at C. Hence, if a denote the coefficient of linear expansion

of the material of the scale, a division of the scale which is

1 unit of length at C. is (1 + at) units at t C. That is, if

the observed height of the barometer at t C. is H units, its

correct height is H (!+/) units. Then, if d
t
denote the

density of mercury at t C. (the temperature of observation), and

y the acceleration due to gravity at the place of observation,

the atmospheric pressure at the place is H (1 + at) d
tg units of

force per unit of area.

It is not usual, however, to reduce the observed height to

absolute units of force per unit of area in this way. It is found

*
It should be noted that the error due to capillarity is eliminated in

the siphon barometer if the tube is of the same bore at the upper and

lower levels of the mercury.



368 GENERAL PHYSICS.

more convenient to find the height of the column of mercury
which would, at C., aj the sea level in latitude 45 C., exert

the same pressure. Hence, if H denote the height of this

column, d the density of mercury at C., and g the accelera-

tion due to gravity at the sea level in latitude 45, we must

have

where H is the observed height of the barometer at temperature
f C., and g the acceleration due to gravity at the place of

observation as explained above.

This relation ives

..

coeffic

expansion of mercury.* We, therefore, have

Now. =-
,
where c is the coefficient of real cubical

d 1 + ct

I + ct g

and since at and ct are small quantities, we may write

Since c is, in general, greater than a, this is more conveniently

written in the form

H = H[1 - (c- a)t].L

In most barometers in general use the material of the scale is

brass, and the value of a may be taken as '00002. The value of

c for mercury is "00018, so that the value of (c a) is '00016.

The value of g, the acceleration due to gravity at the sea level

*See Art. 21, Part iv., on Heat.
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in latitude 45, is 980*6 cms.-per-sec. per sec., so that we get as

a final result

H = H(1--00016 O^j,
where H is the observed height at t C, at a place where the

acceleration due to gravity is denoted by g, and H is the

reduced or equivalent height at C. at sea level in latitude

45 C.

Example. The observed height of the barometer at 15 C. and
at a place where the acceleration due to gravity is 981*2 cms.-per-
sec. per sec., is 761*25 mms. Find the equivalent height reduced

to C. at the sea level in latitude 45. (That is, find the reduced

height of the barometer.)

Here, in the relation

H = H(l - -000160

we have H = 761'25, t = 15, and g = 981 '2.

We, therefore, have

noi .o

H = 761-25 (1
- -00016 x 15) ^^.

That is,

H = 761-25 (1
-

-0024) (1-0006)

= 761-25(1 -
-0018)

= 759-88.

The reduced height of the barometer is thus found to be 759*88 mms.

If the height of the barometer is observed from day to day at

any place it will be found to vary between comparatively wide

limits. The atmospheric pressure at any place is, therefore, not

of constant value, and it is necessary to specify a definite value

as the standard or normal atmospheric pressure. This standard

pressure is known as an atmosphere pressure, or a pressure of

one atmosphere, and may be defined as the pressure due to a

column of mercury 760 mm. high at C. at the sea

level in latitude 45 C. This standard pressure is equal to
'

24
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76 X 13-596 X 980*6 dynes per sq. cm., or 1-0132 x 106
dynes

per sq. cm.

Examples. The normal atmospheric pressure is sometimes defined

(a) as the pressure due to a column of mercury at C. 30 inches

high at Greenwich (</
= 981 '17), and (b) as the pressure due to a

column of mercury at C. 76 cms. high at Paris (g = 980 '94). Find

the equivalent of each of these specified values in dynes per sq. cm.

If we take 1 inch = 2 '54 cms., the standard pressure defined by (a)

is equivalent to

(30 x 2-54 x 13-596 x 981-17) dynes per sq. cm.,

or (1-0164 x 106
dynes per sq. cm.)

Similarly, the standard pressure defined by (b) is equivalent to

(76 x 13-596 x 980-94) dynes per sq. cm.,

or (1-0136 x 106
dynes per sq. cm.)

It has been suggested that a convenient standard value for a

pressure of one atmosphere would be a pressure of 10 dynes

per sq. cm., but the suggestion has not yet been generally

adopted.

Another form of barometer, which differs completely in

principle and construction from the mercury barometer, is the

aneroid barometer. The working parts of this barometer are

shown in Fig. 162. It consists essentially of a small cylindrical

box completely exhausted of air, so that the pressure inside the

box is practically at zero value. The cover of the box is a thin,

corrugated metal plate, B, which is forced inwards by the external

atmospheric pressure to an extent which varies with the intensity

of the pressure. The cover, therefore, moves in and out as

the atmospheric pressure changes, and this movement of the

cover is communicated directly to the spring D, which actuates

the system of levers which controls the motion of the dial-index

shown at F.

The aneroid barometer is specially useful under special

conditions on account of its portability. It can be carried

about from place to place like a watch or small clock, and
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the barometric height can be found at any place by simply

taking the reading, indicated on the dial-scale, at that place.

Fig. 162.

The scale on every reliable aneroid is obtained, in the first

instance, by comparing the readings of the instrument with

Fig. 163.

those of a standard mercury barometer. A convenient form

of aneroid, about the size of a large watch, is shown in Fig. 163.
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Direct observations with the barometer show that the

atmospheric pressure decreases, as explained above, with height

above the sea level. It is possible, therefore, by observing

the difference in the barometric heights at two places at

different levels to calculate their difference of level or the

height of one place above the other. The height of a mountain-

top above the sea level may, for example, be found in this way,
The aneroid barometer is convenient for observations of this

kind, and it will be seen that the small aneroid, shown in

Fig. 163, is provided, round the outer circle of the scale, with an

altitude scale, reading from to over 8,000 feet. In using

the instrument the scale, which is made to revolve, is set with a

key, or by a keyless action, so that the zero of the scale is

opposite the height of the barometer at C. at the sea level at

the time and place of observation. The reading of the scale

at any point then gives directly the height of the point above

the sea level.

123. Boyle's Law. It has already been stated in Art. 92

that the pressure which a given mass of any gas exerts at a

given temperature depends upon the volume which it occupies.

The relation between the pressure and the volume of a given

mass of a gas at constant temperature is found to conform

generally to a certain definite law.

It is found that the volume which a fixed quantity of a gas

occupies at constant temperature is inversely proportional to its

pressure. That is, if a fixed quantity of gas at any constant

temperature occupies a volume V
x
under a pressure Pp and a

volume V2 under a pressure P2 ,
then the relation between

pressure and volume at constant temperature is such that

This law was discovered by Boyle in England in 1682, and

also, quite independently, in 1676, by Mariotte in France.



PROPERTIES OF GASES. 373

The law is, therefore, known in England as Boyle's Law, or

Boyle and Mariotte's Law, and in France as Mariotte's Law.

It will be seen from the statement of the law given above

that if a fixed quantity of gas at constant temperature has a

volume Vj under a pressure Pl5 and a volume V2
under a

pressure P9 ,
then

L ^
V

2 Pi'

or PiVj = P2V2 .

It follows from this if a fixed quantity of gas at constant

temperature has volumes denoted by Vp V
2,
V

3 ,
. . . Vn,

under pressures denoted respectively by P1?
P2 ,

P
3, . . . Pn,

then we must have

PiV, = P2V2
- P

3
V3

= . . . = P.V..

That is, if V denote generally the volume of the gas under

pressure P, then for all corresponding vulues of V and P, we must

have

PV =
k,

where A is a constant.

This result may be deduced directly from the statement of

the law as given above. According to this statement we have

V varies as
=>.

That is, V = k . p ,
where k is a constant, and, therefore, PY = k.

This form of the relation between P and V is conveniently

expressed graphically; for if a curve is plotted, as in Fig. 164,

so that the abscissae represent the volumes, arid the ordinates

the corresponding pressures of a given mass of gas at a constant

temperature, the form of the curve obtained is the characteristic

rectangular hyperbola shown in the figure.
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It will be seen that Boyle's law may be stated in terms of

the pressure and density of the gas. For, if a given mass of a

gas has a volume Vj and density DJ under a pressure P1? and a

volume V2 and density D2
under a pressure P2 ,

then since

, _ and
, _ 2

D.
"
V'

a 3 V
"

P

we must have

D
2

P
2

'

That is, the density of a gas at constant temperature

is directly proportional to its pressure.

C
c'

VOLUME

Fig. 164. Fig. 165.

Boyle's law may be studied experimentally, in the case of air,

by the following simple method. A large U-shaped tube with a

long open limb, CD, and a shorter closed limb, AB, as shown in

Fig. 165, has a quantity of mercury poured into the bend AC,
so as to separate a quantity of air in the closed limb AB from

the external air. The volume of this air can be measured either

by means of suitable graduations on the tube or simply by

measuring the length of the tube occupied by the air. This

latter method assumes, however, that the bore of the tube
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is uniform, and the unit in which the volume is measured is

evidently the capacity of the bore per unit length.

The pressure to which the air in AB is subject

is evidently given by the atmospheric pressure

exerted on the surface of the mercury at C, plus

or minus the pressure due to the difference of the

mercury levels at A and C, according as the level

at C is higher or lower than the level at A. Thus,

in Fig. 165, the pressure of the air in the closed

limb is the atmospheric pressure at C, plus the

pressure due to the short column CO' of mercury.

It will be seen that this pressure may be increased

to an extent which is limited only by the height

of the limb CD by pouring mercury into this limb.

It is possible, therefore, by increasing the pres-

sure in this way, step by step, and observing the

corresponding values of the pressure and volume

at each step, to determine experimentally the

relation between the pressure and volume of air

in the tube AB at constant temperature.

The tube shown in Fig. 165 is similar to that

used by Boyle in the experiments by which he

established the law. It usually takes the form

shown in Fig. 166, and is generally known as

Boyle's tube. Both limbs of the tube are usually

graduated in the same way in length divisions

(preferably mms.) from a zero at the same hori-

zontal level on both tubes.

Experiment 33. Take a Boyle's tube, similar to

that shown in Fig. 166, pour a quantity of mercury
into the bend, and adjust the level of the mercury
in the closed limb to the zero level of the scales on

the tube, by tilting the tube and allowing air to

enter or escape from the closed limb as may be necessary.
Read the height of the barometer, and also the height of the level

Fig. 160.
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of the mercury in the open limb above the zero level. The sum

of these two readings "(in mms. or inches) is the pressure of the air in

the closed limb in mms. or inches of mercury. The volume of the air

in the closed limb may be recorded in terms of the linear divisions of

the scale, but it must be remembered, as explained above, that

the unit of volume thereby adopted is the capacity of the bore of the

tube per division.

If it is found that the level of the mercury in the closed limb is

not exactly adjusted to the zero level, the actual level must be read,

and the necessary corrections applied to the pressure and volume

readings.

Now pour mercury into the open limb, step by step, so as to

raise the level above 50 mms. at each step, and read the pressure and

the volume of the air in the closed limb at each step.

Arrange the readings taken in tabular form, and verify that the

product PV for the air in the closed limb is practically constant.

Plot a curve showing the relation between P and V, as in Fig. 164.

Example. In an experiment, similar to that described above, the

observations and results set out in the table given below were

obtained.

Heading of Level of
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cant figure. It will generally be found, in a rough experiment of

this kind, that the agreement be-

tween the different values does not

go beyond the second or third sig-

nificant figure. The agreement is,

however, sufficient to indicate the

general truth of the law.

The type of tube described above

is not suitable for accurate work.

A better form of tube is shown in

Fig. 167. In this form the closed

limb is fitted with a stopcock at the

closed end, and is graduated, like a

burette, in cubic centimetres and

tenths of a cubic centimetre. It

is also arranged, as shown in the

figure, so that mercury can be ad-

mitted into the tube from below

instead of being poured in from

above at the upper-end of the open

limb. The mercury supply is con-

tained in a reservoir connected to

the bend of the tube by a length of

stout rubber-tubing, and is carried

by a metal holder which slides up
and down the stand as required.

The pressure to which the gas in

the closed limb is subject can thus

be varied by raising or

lowering the mercury reser-

voir. If the stopcock on

the closed limb is opened
at the beginning of any set

of observations the initial

volume of the air in the closed limb can be adjusted to any

Fig. 167.
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desired value, and the initial pressure will be the existing

atmospheric pressure.

For exact work it is necessary that the air or gas experimented
on should be perfectly dry. The inner surface of the tube and

the mercury should, therefore, be thoroughly dried, and the

closed limb should be filled by drawing in the air or gas at

the stopcock through a range of drying tubes connecting the

limb with the gas supply. This may easily be done by first

filling the limb with mercury up to the stopcock, and then

drawing in the air or gas, through drying tubes, by lowering the

mercury reservoir, so that the dry gas enters the limb as the

mercury leaves it.

In the experiments described above, the volume of gas in the

closed limb is supposed to be varied only by increasing the

pressure to which it is subjected. That is, the law is tested by
these experiments only for pressures greater than the atmospheric

pressure. The experiments may, however, be extended to pres-

sures less than one atmosphere by arranging the tube, shown

in Fig. 167, with the closed limb on a level with the top instead

of with the bottom of the open limb. If the initial volume

of the gas in the closed limb is then adjusted to about half the

capacity of the limb at atmospheric pressure, the pressure can be

reduced, and the volume increased by lowering the mercury
reservoir. As the reservoir is lowered the gas in the closed

limb expands, and, step by step, readings of the volume and

pressure can be taken as explained above.

More accurate results may, however, be obtained at low

pressures by the method adopted by Regnault. A graduated

tube, similar to a barometer tube, is nearly filled with clean dry

mercury, and then inverted, as shown in Fig. 168, in a tubular

cistern filled with mercury, so that the small quantity of air left

in the tube at filling rises to the upper part of the tube, and

occupies the space AB above the mercury in the tube. The

volume of this small quantity of air in AB can be read off
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B

on the graduations of the tube, and its pressure is evidently the

atmospheric pressure on the surface of the mercury in the

cistern, minus the pressure due to the column BC of mercury.

The volume and pressure of the air, which can thus be de-

termined for any position of the tube in the cistern, can evidently

be varied by raising or lowering the tube in ^\.
the cistern. As the tube is lowered, for ex-

ample, the volume decreases, and the pressure

increases and becomes equal to the atmos-

pheric pressure when the volume of the air in

AB reaches its initial value at the time of

filling the tube.

The volume and pressure of the air can,

therefore, be observed for a series of successive

positions of the tube, and the truth of Boyle's

law, for pressures less than one atmosphere, can

be tested and established.

Experiment 34. Take a clean dry barometer

tube and pour clean dry mercury into it until the

level of the mercury rises to within a few inches

of the mouth of the tube. Measure carefully the

length of part unoccupied by mercury : this gives

the volume of the air which fills the space, and,

as the air is at the atmospheric pressure, its

volume and pressure are both known.

Now place the thumb, or a flat rubber-pad, over

the mouth of the tube, and invert it in an ordinary

cistern of mercury, so that the air rises to the

upper part of the tube. Measure the length now

occupied by the air, and determine its pressure

by subtracting the height of the column of

mercury standing in the tube from the barometric height.

Verify that the product PV for the quantity of air in the tube is

the same for the values of P and V observed before inverting the

tube, as for the values observed after inversion.

Repeat the experiment for a number of different quantities of air.

Note that the value of PV is constant for any one quantity of air,

but the value of the constant is different for the different quantities.

Fig. 168.
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After Boyle's law was first established by Boyle and Mariotte

it became the subject of much careful experimental research

with the object of discovering whether the law was strictly

exact and applicable to all gases.

The first result which was conclusively established was the

fact that different gases, such as air, oxygen, hydrogen, nitrogen,

carbon dioxide, and sulphur dioxide, when subjected to the same

increase of pressure, were compressed to different extents. This

showed at once that the law could not apply exactly to every

gas even if it applied exactly to some one gas.

Dulong and Arago, in 1826, and Regnault, in 1847, carried out

very careful and laborious investigations of the truth of the law

by the simple method described above, but with much more

accurate and elaborate apparatus. The open limb of the tube

was extended in Regnault's apparatus to over thirty metres

in height, so as to extend the range of the experiments to high

pressures, and the mercury was pumped into the tube from

below instead of being poured in from above.

An important improvement introduced by Regnault in the

method of the experiment enabled him to avoid the comparatively

large percentage error which attends the measurement of the

volume of the air under high pressure. As the pressure is

increased the volume of the air decreases, and at high pressures

the volume becomes so small that the inevitable error made in

observing it may become a very large fraction of the observed

value. Regnault avoided this error by taking the same initial

volume of gas at each pressure, and reducing it by increase of

pressure to the same final volume (about half the initial volume)
in each case. Every time the volume of the gas in the closed

limb was reduced to this final volume, more gas was pumped
into the limb until the initial volume was again reached, and

this volume was then, in turn, reduced again to the final volume

by applying the necessary increase of pressure.

Neither Dulong and Arago, nor Regnault were able to deduce
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any general result from their investigations. It was shown,

however, conclusively that different gases deviate to different

extents from exact conformity to the law. It was found, for

example, that all gases, except hydrogen, are slightly more

compressible under increase of pressure than they would be

if they obeyed the law exactly, and that this deviation wa&

more marked at ordinary temperatures in the case of gases, such

as carbon dioxide arid sulphur dioxide, which are not far

removed from their temperatures of liquefaction, than in gases

such as oxygen and nitrogen. Hydrogen, on the other hand,

was found to be less compressible under increase of pressure than

is required by the law.

These results, although well established by experiment, are

evidently of an empirical, rather than a general nature, and

it was not until 1870 that the general nature of the deviation

of all gases from strict obedience to Boyle's law was formulated.

In this year Amagat published the result of a very complete

research on the truth of Boyle's law, and the nature of the

deviations from it in the cases of a number of different gases.

It was found that in all gases the value of PY, instead of being

a constant for all values of P, first decreased to a minimum and

then increased as the value of P increased. The value of P, for

which PV reached its minimum value, and the rates of decrease

and increase before and after reaching the minimum were found

to vary within somewhat wide limits for different gases, but

the general nature of the variation of PV with P was the same

for all gases.

These results are most effectively exhibited by means of curves

showing the relation between PV and P for different gases. The

curves for hydrogen, nitrogen, and carbon dioxide at several

different temperatures are given in Figs. 169, 170, and 171.

It will be seen that the minimum value of PV occurs at very

different values of P for different gases, and that it is a much

more marked and characteristic feature of the curve for an easily
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liquefiable gas, such as carbon dioxide, than for the more
"
permanent

"
gases, sucn as hydrogen and nitrogen.

It will be seen, too, from the carbon dioxide curves in Fig. 171,
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Fig. 169. Hydrogen.
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Fig. 170. Nitrogen.

that the deviation from Boyle's law, and the minimum value

of PV, become more and more marked as the temperature

approaches the temperature of liquefaction.
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In the case of hydrogen it is to be noted that the minimum

value of PV corresponds to a very low value of P, so that the

value of PV for this gas appears at all ordinary pressures

to increase with P.

If we consider the variation of PV with P for the gases

2-00

100 600 700200 300 400 500

Fig. 171. Carbon dioxide.

for which curves are given in the figure, it will be seen that for

a limited range extending, say, from one to ten atmospheres, the

value of PV decreases with P for all gases, except hydrogen,

and increases for hydrogen. These are obviously the results
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given by Eegnault, which are thus seen to be included in

Amagat's more complete and general result.

124. Dalton's Law. When a mixture of gases, which have

no chemical action on each other, occupy the same space, it is

found that each gas is distributed uniformly throughout the

space, and that it exerts exactly the same pressure as if it alone

occupied the space. It is also found that the pressure exerted

by the mixture is the sum of the individual pressures exerted

severally by the constituents of the mixture. The atmospheric

pressure, for example, at any point is the sum of the pressures

exerted individually and separately by the various constituents

of the atmosphere.

The general law, that the pressure in a mixture of gases

which have no chemical action on each other is equal to the sum

of the individual pressures of the constituents of the mixture,

was established experimentally by Dalton and is known as

Dalton's law.

The pressures exerted individually by any constituent of

a gaseous mixture, for which Dalton's law holds, is sometimes

called the partial pressure due to that constituent.

125. Correction for the Buoyancy of the Air in

Weighing. It has already been explained that the principle

of Archimedes applies in a gas as in a liquid. The apparent

weight of a body in air must, therefore, be less than its true

weight in a vacuum by the weight of the air which it displaces.

It is necessary, therefore, to correct all weighings in air for the

buoyancy of the air by adding the weight of the displaced air to

the apparent weight in every case. This correction is in general

very small, but in the case of bodies of large volume and small

mass the weight of the displaced air may be comparable with

the weight of the body, and the correction becomes an important

one.

The value of the correction in any given case is usually found

in the following way. When a body is weighed in air in the
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usual way the balance obtained evidently indicates that the

apparent weight of the body in air is equal to the apparent weight of

the weights in air. Now, the nominal value, or the value marked

on any accurate weight, is usually its true weight in vacuo, so

that, if W denote the observed weight of the body, as indicated

by the nominal value of the weights in the scale pan, and d

denote the density of the material of the weights, the apparent

weight of the weights in air is ( W .

SJ,
where S denotes

the density of the air. Similarly, ifW denote the true weight

of the body in vacuo, and d' the density of its material, its

/ W x

apparent weight in air is (W y\ Cv /

We, must, therefore, have

and AV = W
f.

The true weight W can thus be calculated from the observed

weight W if d, d' and 8 are known. The value of B varies from

day to day with the temperature, pressure, and humidity of the

air, so that for accurate work its value in any particular case

would have to be calculated from observations of these atmo-

spheric data at the time of weighing. For ordinary purposes,

however, the value of 8 may be taken as 0'0012 gramme per

c.c., and, as the weights in general use are made of brass, the

value of d' is about 8'4 grammes per c.c. If we substitute these

25
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values in the relation given above, we get

W' = W Q-

1 "
0-0012\'

~~jr)

where W and W are expressed in grammes.
In the calculation given above it is assumed that the body

weighed is of uniform density throughout its mass. When this

is not the case as, for example, in the case of a large glass

globe completely or partially exhausted of air the volume of

the displaced air must be found by determining the external

volume of the body. This may be evidently done by finding

directly the weight of water which the body displaces, or by

finding its apparent loss of weight in water.

The relation given above will then become

or W = W !--

where V denotes the volume of the displaced air.

126. Determination of the Density of Gases. The

density of a gas is usually determined by finding the mass of

unit volume of the gas directly. The mass of a known volume

of the gas is found by finding the weight of the gas which fills

a glass bulb of known capacity at a known temperature and

pressure.

A spherical glass bulb or globe provided with a capillary glass

stopcock is completely exhausted of air, and weighed ;
it is then

filled at known temperature and pressure with the gas whose

density is to be determined, and again weighed. The increase

in weight gives the mass of the gas which fills the globe at the

temperature and pressure of filling. In order to eliminate the

correction due to the buoyancy of the air in these weighings
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the globe is usually counterpoised by a similar globe of exactly

equal external volume
;
the air displaced by each globe is thus

of the same weight, and the buoyancy correction need not be

considered.

The capacity of the bulb is found by determining, in exactly

the same way, the mass of water which fills it at a known

temperature.

From these weighings the absolute density of the specific

gravity of the gas may be determined.

In some cases the density of the gas is found relative to some

standard gas, such as oxygen, instead of its density relative to

water. In order to do this it is necessary to find the mass

of the standard gas which fills the density globe at a known

temperature and pressure.

The capacity of the globes used for the determination of the

density of a gas need not be more than 50 c.c., except in the

case of a gas of very low density, such as helium or hydrogen,

when a capacity of nearly 200 c.c. is desirable.

In accurate determinations of the density of gases it has been

found necessary to make a correction for the decrease in the

volume of the density globe when exhausted of air. The

-decrease due to the compressing effect of the external pressure

.affects the accuracy of the result obtained to an extent which is

far from negligible.

The absolute densities of a few of the common gases at normal

temperature and pressure are given below in grammes per cubic

centimetre :

Air, T2932 grammes per c.c. Nitrogen, 1 '2571 grammes per c.c.

Oxygen, 1-4293 ,, ,, Hydrogen, 0'0899 ,, ,,

127. Diffusion. The process of diffusion in gases is of a

very similar character to that of diffusion in liquids. If a

vessel contains two or more gases, none of which is uniformly

-distributed throughout the available space in the vessel, mole-
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cules of each gas will ^>ass from points of higher to points of

lower density or pressure for that particular gas, until it is in

hydrostatic equilibrium at all points throughout the space

occupied by the gases. This process of mixing of gases by the

migration of the molecules from points of higher to points of

lower density for each constituent is called diffusion. The

process is much more rapid in gases than in liquids, and takes

place in every direction irrespective of the action of gravity and

the relative density of the gases.

The uniform distribution
* of the constituents of the atmo-

sphere throughout the space which it occupies is due to

diffusion, and the fact that the composition of the atmosphere i&

the same at all points and at all levels, shows that diffusion

takes place equally in all directions for all its constituents.

The quantitative treatment of diffusion in gases follows the

same line as that adopted for diffusion in liquids. Imagine each

gas in a mixture of gases to be arranged in parallel plane layers-

of uniform density, and let $ denote the difference in density

between two adjacent layers a very small distance x apart, then

g
- is the gradient of density between these layers, and the
$/

quantity of gas which diffuses across unit area in unit time from

one layer to the other, is proportional to this gradient, and is,

g
therefore, denoted by k -, where k is a constant. This constant

k for a given gas in a given mixture is the coefficient of diffusion

of the gas under the given conditions. Experiments for the

determination of k for a given gas have been made only for

mixtures of that gas with one other gas, and the coefficient is

then known as the coefficient of inter-diffusivity of the two

* Uniform distribution must here be understood to mean that the

ratio of the partial pressure due to any constituent at any point, to the

atmospheric pressure at that point, is the same for all points in the

atmosphere.
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gases. In one method of experiment for the determination of

this coefficient, a long cylinder is divided into two halves by a

-central partition, and one half is filled with one gas and the

other half with the other gas. The partition is then removed

without disturbing the gases, and mixing by diffusion allowed to

go on for a known time. The partition is then replaced, and the

quantity of each gas which has diffused from one half into the

other is determined by analysis. From results obtained in this

way the coefficient k can be calculated.

It can be shown that if the coefficient of diffusion for a gas is

defined as above, and if at any point in the mixture TT denote

the difference of partial pressure corresponding to the difference

of density S, then the rate at which the gas diffuses at that

point is directly proportional to TT, and inversely proportional to

the square root of the density of the gas.

The passage of a gas through a porous partition is usually

considered under the head of diffusion. It is, however,

important to understand that a gas may pass through a porous

partition by three different processes. If the holes or pores in

the partition are not very fine, and are large compared with

the thickness of the partition (as would be the case, for example,

in a partition of metal foil perforated by very small holes made

by a needle point), the gas passes through the partition by the

process of effusion. This process is the same as that by which a

liquid flows out through a hole made in the wall of the vessel

containing it. The theory of the process cannot here be con-

sidered, but it may be stated that the rate of flow of the gas

through the partition is proportional to the difference in the

pressure of the gas on the two sides of the partition, and

inversely proportional to the density of the gas.

If the holes or pores in the partition are not very fine, but

are small compared with the thickness of the partition, the gas

passes through by the process of transpiration. This process is

the same as that by which a fluid passes through a capillary
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tube, and the rate at which it takes place depends, as explained

in Art. 117, on the viscosity of the fluid.

If, however, the pores of the partition are fine enough to be

of molecular dimensions, the gas passes through by a process

which is practically identical with diffusion as considered above.

The rate at which a gas passes through a partition of this kind

will, therefore, be proportional to the difference of the partial

pressures due to the gas at the two faces of the partition, and

inversely proportional to the square root of the density of the

gas. Thus, if two gases diffuse through a partition under

exactly the same conditions of pressure and temperature, the

rate at which they severally pass through the partition are

inversely proportional to the square roots of their densities.

For example, if two gases, at the same pressure and temperature,

are separated by a porous partition through which each gas

can pass by diffusion, the rates at which the gases begin to

diffuse through the partition, are inversely proportional to the

square roots of their initial densities. As diffusion proceeds,

however, the difference between the partial pressures at the

opposite faces of the partition ceases to be the same for each gas,

and the ratio of the rates of diffusion is determined by the more

general rule given above.

The law that the rates of diffusion of different gases under

the same conditions of pressure, gradient, and temperature are

inversely proportional to the densities of the gases, is Graham's

law of diffusion, and was established by Graham experimentally

from observation of the rates of diffusion of gases through

partitions of porous materials such as meerschaum, compressed

graphite, and plaster of paris.

When a mixture of gases passes through a partition by

effusion or transpiration, no separation or partial separation of

the constituents of the mixture takes place ;
the mixture passes

through as a mixture, and its composition is practically un-

changed by its passage through the partition. When, however,
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a mixture of gases is allowed to diffuse through a partition, the

different constituents in general diffuse at different rates, and a

partial separation of the constituents may thus be produced.

The gas which diffuses through the partition will obviously be

richer than the initial mixture in those constituents which

diffuse most rapidly, while the gas which has not passed through

at any stage in the process will be richer in those constituents

which diffuse most slowly.

This process of partial separation of the constituents of a

gaseous mixture by diffusion through a porous partition is

called atmolysis. In practice the mixture is usually passed

through a long stem of a clay tobacco pipe enclosed in a tube

from which the air is exhausted. A slow current of the mixture

is passed through the stem, and diffusion of the several con-

stituents takes place through the wall of the stem into the

vacuum in the surrounding tube. The composition of the

mixture may thus be appreciably changed by its passage

through the pipe stem, for the mixture which emerges from the

stem will be richer than the initial mixture in those con-

stituents which diffuse most slowly through the stem wall.

A notable instance of the application of this method is found in

its use by Sir William Ramsay and Lord Rayleigh in the partial

separation of nitrogen and argon. A mixture of these gases,

containing only a small percentage of argon, was passed through

a considerable length of pipe stem as explained above. The

nitrogen being greatly in excess, its partial pressure in the

mixture was much greater than that of the argon, and its

density being also less than the density of argon, it diffused

through the wall of the stem much more rapidly, so that the

gas collected at the other end of the stem, after passing through

its whole length, was much richer in argon than the initial

mixture.

128. Mechanical Air Pumps. An air pump is an instru-

ment constructed for the purpose of pumping air or any similar



392 GENERAL PHYSICS.

gas out of a closed vessel, and so producing a more or less com-

plete vacuum in the vSssel. Pumps of this kind are of two

distinctly different types; one type being known as the

mechanical pump, and the other as the mercury pump.
The general construction and action of the mechanical pump

are indicated in Fig. 172. It consists of a cylindrical metal

barrel, AB, in which a lightly fitting piston, C, can be worked

up and down by the handle D at the upper end of the piston

Fig. 172.

rod. This barrel communicates through the tube EF with the

vessel to be exhausted of air. or, as shown in the figure, with a

bell-jar receiver, R, which fits as an airtight cover on the flat

circular plate GH.

The piston C is fitted at a with a valve, which opens upwards

only,* and a similar valve is fitted also at b, at the mouth of the

tube EF, which passes from the barrel to the receiver.

* A small hole covered with a stretched strip of thin sheet rubber forms

a simple value of this kind.
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It will be seen that when the piston is forced downwards

from the top to the bottom of the cylinder, it tends to compress

the air in the barrel below it. This at once closes the valve at

b, and when the pressure in the cylinder becomes greater than

the atmospheric pressure, the valve at a opens, and the air is

forced out through it into the upper part of the cylinder and

thence to the outer air. In this way practically the whole of

the air in the cylinder is driven out through the valve a by the

downstroke of the piston. Then, when the piston is raised for

the upstroke, the valve at a at once closes, and the air in the

receiver expands into the cylinder as the piston is raised, so

that at the end of the upstroke the air which filled the receiver

only at the beginning of the stroke, now fills the receiver and

cylinder. At the next downstroke the whole of the air in the

cylinder will again be expelled, and at the following downstroke

the air left in the receiver will again expand so as to fill both

receiver and barrel. This process of exhaustion goes on, stroke

after stroke, until a fairly low vacuum is produced in the

receiver.

The theory of this process is comparatively simple. Let

V denote the volume of the receiver and tube up to the valve at

b, and v the volume of the cylinder from the valve at b to the

valve at a when the piston is at the top of its upstroke. Then,

since at each double stroke, consisting of a downstroke, followed

by an upstroke, the air occupying a volume V in the receiver

expands, and occupies a volume V + v in the receiver and

cylinder, it follows that if D and d denote respectively the

density of the air at the beginning and at the end of the

stroke, we must have

or
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That is, the density d at the end of the stroke is equal to

V
^
- times the density at the beginning of the stroke.

Hence, if D denote the density of the air in the receiver at

the beginning of the process of exhaustion, the density of the

air at the end of the first double stroke will be given by

Similarly, the density at the end of the second double stroke will

be given by

V / V ^

and it will be seen by continuing this line of argument, that the

density at the end of the rz
th double stroke is given by

This result shows that the value of dn can never become zero

(indicating a perfect vacuum) no matter how many strokes are

made, but it is obvious that if the pump is mechanically perfect

the value of d.n may be made negligibly small by a comparatively

small number of strokes.

Pumps of the pattern indicated by Fig. 172 are, however,

very far from being mechanically perfect, and are rapidly going

out of use in modern practice. There is always a certain

amount of leakage in action, and it is impossible to make the

bottom of the piston fit so closely to the bottom of the cylinder

as to drive out all the air in the cylinder at the end of the

downstroke.* Another difficulty arises out of the fact that

when the pressure of the air in the receiver becomes very low it

is unable to raise the valve at b during the upstroke of the

* That is, there is always a small clearance or space between the

bottom surfaces of the piston and cylinder.
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piston. This difficulty can be remedied by arranging for the

valve to be opened and closed mechanically by the action of

the piston, but this complicates the construction of the instru-

ment, and adds to the risk of leakage.

One of the best of the mechanical pumps of the piston and

valve pattern is the Tate pump, shown diagrammatically in

section in Figs. 173 and 174.

The barrel or cylinder AB is fitted with a double piston, CD,
of which the length is rather less than half the length of the

cylinder. This cylinder communicates at its middle point, E,

with the receiver. Two valves, both opening outwards, are

ru
Lrx

M\ A I <(
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time the valve at a closes, and a vacuum is formed in the space

CA, between the piston .and the end of the cylinder, until the

end C of the piston passes the point D. and the air in the

receiver is free to expand into this space. At the return

stroke of the piston the process just described is reversed
;
the

air in the half DA is driven out at the valve a, and a vacuum is

formed in the space DB until the piston is pushed home, and

the receiver is again put in communication with the half DB of

the cylinder.

Fig. 175.

It thus appears that every stroke of the piston is a double

stroke, for each half of the cylinder acts as a separate cylinder.

In the case of this pump the volume of the receiver, denoted by

V in the general theory given above, is evidently the volume up
to the point E, and the volume of the cylinder, denoted by /, is

the volume of the space between the piston and either end of

the cylinder when the piston is in its extreme position at the

other end.
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A general view of a good form of this pump is shown in

Fig. 175.

A more satisfactory form of mechanical pump which has

come into general use in recent years is the Fleuss pump. This

pump is practically free from the defects due to valve action and

piston clearance, and is found to give a much better vacuum

than the older forms described above. The general construction

of this pump is shown diagrammatically

in Fig. 176.

The cylinder AB is fitted with a

piston, C, and a fixed partition, D,

through which the piston-rod works.

This partition is a little below the

cover of the cylinder, and is provided

with a value at a, which opens out-

wards. The cylinder contains a quan-

tity of oil sufficient to fill it up nearly

to the level of the side tube E when

the piston is at the bottom. The tube

E communicates through the tube G
with the receiver or vessel to be ex-

hausted, and the tube F is provided to

allow the oil to flow round from the

under to the upper side of the piston at

the end of each downstroke. The safety

bulb at H is intended to prevent the

oil finding its way into the tube G- if

the piston is forced down too suddenly

at the end of its stroke.
Fig. 176.

If we imagine the piston to be raised from the bottom to the

top of its stroke it will be seen, from the description given

above, that as it rises it carries up some of the oil with it as a

layer on its upper surface, and after cutting off the communica-

tion between the cylinder and the receiver through the tube Er
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it forces out the air between it and the partition D, through the

valve at a. The oil On the piston also passes through the

valve, and sweeps out every trace of air from the space between

the piston and the partition. Then, at the downstroke, a

vacuum is formed in the space between the piston and the

partition until the tube at E is cleared, and the receiver is put

Fig. 177.

in communication with this space. The air in the receiver

then expands into the cylinder, and the air thus withdrawn

from the receiver is swept out of the cylinder at the next

upstroke. During the formation of the vacuum between the

piston and partition during the first part of the downstroke, the

oil which found its way through the valve a, at the end of the
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upstroke, effectually prevents leakage at this valve, or at the

point where the piston-rod passes through the partition.

In this form of pump the motion of the piston is comparatively

free from friction, and the pump is very easily worked. When
in good working order it readily gives a vacuum in which the

pressure is less than that due to a fifth of a millimetre of

mercury. A convenient form of the pump is shown in Fig. 177.

A mechanical compression pump or syringe, such as may be

used for compressing air into a reservoir, is shown diagrammati-

cally in Fig. 178. The action of the pump can readily be

Fig/ 178.

followed from the figure ;
the valve at a opens inwards, and the

valve at b outwards from the cylinder.

129. Mercury Air Pumps. The most satisfactory form of

air pump for obtaining a very low vacuum is a mercury pump.

In this form of pump the piston is replaced by mercury which

is made to rise or fall in the tube or barrel of the instrument,

and the use of valves is dispensed with entirely. A mercury

pump is called a lift pump or a fall pump, according as the air is

driven out of the body of the pump by the rise or fall of the

mercury. In both cases the principle of action is the principle of
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13 S

Toricelli's experiment, and the vacuum produced by the pump
is essentially the Toric^llian vacuum.

The typical fall pump is the Sprengel pump, first described by

Sprengel in 1865. In its original and simplest form this pump
is arranged as shown in Fig. 179. The essential part is a long

capillary tube, AB, about 900 mm.

long, and with a bore of about

1*5 mm. diameter. This tube is

connected at A by a stout rubber

tube connection with a funnel or

reservoir, F, which can be filled

with mercury, and a screw clip on

the rubber at S enables the fall of

mercury from the reservoir into

the tube to be controlled and

arrested.

At its lower end, B, the tube

dips into a small cistern of mer-

cury which is arranged so that

any excess of mercury which falls

into it through the tube from the

upper reservoir overflows into the

small vessel C, and can be returned

to the reservoir.

At a point, D, about 100 mm.

below A, the side tube branches

off, as shown in the figure, from

the tube AB. This tube com-

municates with the vessel which

is to be exhausted of air by
the action of the pump.

When the reservoir F is filled with mercury, and the clip at

S opened, the mercury falls through the tube AB into the

cistern below. The tube being, however, a capillary tube, the

Fig. 179.
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mercury does not fall in a continuous stream, but in a sequence

of drops which fall through the tube as a sequence of short

columns or threads of mercury separated by longer columns of

air, as indicated in the figure. Hence, as the mercury continues

to fall through the tube, air is continuously removed from the

tube and the vessel communicating with it through the side tube.

This air is carried down the tube between the successive mercury

drops into the cistern, and finds its way thence into the outer

air. When the space between any two falling drops comes

opposite the opening of the tube at D, the air in the vessel

V expands into it, and some of the air from the vessel is

carried down between the drops as they fall below D. This

process goes on continuously as the successive air spaces

pass the point D, until, ultimately, a vacuum is produced in

the vessel.

As a vacuum forms in the vessel and the upper part of the

tube, mercury rises as a continuous column in the tube above

the level of the mercury in the cistern, and when the process of

exhaustion is complete, and a perfect vacuum is formed, this

column stands at the barometric height in the tube with its

upper level a little below the point D. The clip at

S is closed,* and at this stage the pump is practically

a simple barometer, as in Toricelli's experiment with the

Toricellian vacuum in the closed space above the mercury in

the tube.

In the simple form described above Sprengel's pump is subject

to a serious defect due to the fact that the mercury falling from

the reservoir at F carries down air with it and makes it impos-

sible to obtain a good vacuum. This defect is most satisfactorily

* When the vacuum is nearly complete before S is closed, the drops of

mercury fall from the reservoir on to the mercury and glass below with

a sharp metallic clink due to the absence of the air, which serves, when

present, as a cushion or buffer between the drop and the surface on which

it falls.

26
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removed by the arrangement shown in Fig. 1 80, which represents

the form in which the jftimp is now used.

The capillary tube AB is arranged

much as in the earlier form of the pump.

The reservoir F is not, however, con-

nected directly to the head of the tube,

but communicates with it through a long _r.

U-tube, G, a bulb, K, which is exhausted

of air, and a second long U-tube, H.

The side tube DE communicating with

the vessel to be exhausted branches off

Fig. 180. Fig. 181. Topler Pump.

in this form of the pump at the head of the tube AB at or near

the bend where the tube joins the U-tube H.
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The presence of the vacuous bulb at K is found to prevent

any air from finding its way with the mercury into the pump.
The mercury flows from the tube G into the bulb K as a fine

jet which strikes on the side of the bulb; from the bulb K it

passes through the U-tube H into the head of the pump at A.

Here, as in the capillary tube, it breaks into drops, and carries the

air from the vessel V down with it, as explained above. The

U-tubes G and H are evidently needed to protect the vacuum at

K and the vacuum in V when it is formed. The reader will

find it a good exercise to draw diagrams showing the levels of

the mercury in the pump at the beginning and at the end of the

process of forming a vacuum in V.

One of the most convenient forms of mercury pump is, how-

ever, the lift pump in the form devised by Topler, and known

generally as Topler's pump.

The general arrangement of this pump and the relative

proportion of its parts is shown in Fig. 181. The barrel or

body of the pump is formed by the cylindrical reservoir A,

which is about 200 mms. long and 50 mms. in diameter. This

cylinder is continued downwards into the long tube B, about

00 mms. in length and 13 mms. in diameter. Upwards to the

point C, for a short length of about 50 mms., the cylinder is

continued by a similar tube, but at this point it joins the long

capillary tube D, and the bore narrows gradually and evenly to

<about 1 mm. This capillary tube is about 800 mms. long, and dips

into a small cistern of mercury at E. The side tube FG, also of

13-mm. bore, is arranged in parallel with the cylinder A, and

serves to put the cylinder in communication with the vessel to

be exhausted through the side tube H, the valve B, and the

drying bulb PP. The tube H is of small bore, not more than

4 mms. or 5 mms., and branches off from FG at a point on a

level with the lower end of the cylinder. The float valve at V
is provided to prevent the mercury as it rises in the cylinder

finding its way into the drying bulb
;
the upper end of the
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cylindrical float is ground to fit accurately into the tapering bore

of the tube at the junction just above it. The drying bulb PP
contains phosphorus pentoxide as a drying agent, and com-

municates through the stopcock at T with the vessel, to be

exhausted of air.

A large reservoir, R, containing mercury is connected by
about a metre length of thick rubber tubing to the lower end of

the tube B, and is arranged so that it can be raised or lowered

by hand or by means of a suitable lift.

The action of the pump is simpler than the construction of it.

The reservoir K is raised so that the mercury rises slowly in

the pump until it reaches the point C at the head of the pump.
It will be seen that when the mercury in the side tube passes

the point H communication with the vessel to be exhausted i&

cut off, and the further rise of the mercury drives all the air in

the cylinder A and in tube FG out through the capillary tube D.

The air thus expelled from the pump bubbles out through the

mercury in the cistern at E and escapes into the outer air.

When the mercury reaches the point C a small quantity is

allowed to overflow through the capillary tube, and the reservoir

is then carefully lowered. As the mercury falls a vacuum is

produced in the upper part of the cylinder and the side tube,

but at a certain point air from the vessel being exhausted finds

its way through the side tube H and up the tube HG into this

vacuum. Hence, by the time the mercury falls below the point

F, the air in the vessel will have expanded into the cylinder A
and the tubes connected with it. This air may be swept out as

before by again raising the reservoir until the mercury overflows

at C, and the process of exhaustion may thus be continued by

alternately raising and lowering the reservoir until the required

degree of exhaustion is obtained.

As the vacuum is formed in the pump and the vessel con-

nected to it, a continuous column of mercury rises in each of the

tubes B and D, and when the vacuum is complete the mercury
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column in each tube stands, subject to the correction for

capillarity in each case, at the barometric height.

This form of pump acts quickly and efficiently, but it requires

careful handling in raising and lowering the mercury.

130. Compressed Air Manometer. The mercury pressure

gauge or manometer has been described in Art. 121. This form of

gauge is suitable for pressures less than the atmospheric pressure,

or for pressures not greater than two atmospheres ;
for higher

pressures the mercury column in the gauge becomes inconveniently

long, and for very high pressures it would be unworkable.

The compressed air manometer is therefore generally used for

the measurement of pressures greater than the atmospheric

Fig. 182. Fig. 183.

pressure, and particularly for high pressures. Its principle of

action is derived from Boyle's law; it is, in fact, a form of

Boyle's tube. A common form of the instrument is shown in

Fig. 182. A column of dry air is confined in the closed limb

AB by the mercury in the bend BC, and the open limb CD

communicates with the vessel in which pressure is to be measured.

The pressure thus applied to the surface of the mercury at C

compresses the air in the closed limb AB, and the extent to

which the air is thus compressed indicates the pressure to which

it is exposed. The tube AB is graduated, in accordance with

Boyle's law, to indicate the pressure to which the air in it is

exposed, and the reading on the scale of graduation goes directly
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the pressure in the vessel with which CD is in communication.

In some forms of the instrument the bore of the limb BA tapers

toward the upper end A; this prevents the rapid decrease in

the length of the scale divisions as the pressure increases, and

gives, therefore, a more open scale at high pressures.

If the manometer is to be used for the measurement of high

pressures only, it is sometimes constructed with a bulb at the

lower end of the closed limb AB. As the air in the limb is

compressed the air from the bulb is forced

into the tube above it, so that when the

mercury enters the tube the air above it

will be at a pressure which depends in

value upon the relative capacities of the

bulb and the tube. The tube is then

graduated to indicate pressures above

this value as the zero of the scale. An

example of this form of the manometer is

shown in Fig. 183.

131. The Common Suction Pump
and Force Pump. The action of the

suction pump commonly used for pump-

ing water up from a well is very similar

to that of the air pump shown in Fig.

172. A diagrammatic section of the

pump as usually constructed is shown in

Fig. 184. The barrel of the pump AB
is continued downwards from its lower end by the tube BC

which communicates with the water supply, the valve a at

the junction of the tube with the barrel being made to open

upwards. The piston D is constructed to work smoothly and

tightly in the barrel and is fitted at b with a valve which opens

upwards. In the case of a hand pump the piston-rod R is

connected to a lever which is provided with a handle at H.

It will be seen that when the piston is set in motion the
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pump at first acts as an air pump, and by pumping air out of the

barrel and the tube BC rapidly decreases the pressure of the air

on the surface of the water inside the tube at C. The pressure

of the air is therefore greater on the surface of the water outside

the tube than on the surface inside the tube, and this excess of

pressure forces the water to rise in the tube. As the pressure

inside the tube is decreased by the action of the pump the water

rises higher and higher until it enters the barrel at the valve a.

The pump then begins to act as a water pump in much the same

way as it at first acted as an air pump. At each down-stroke

the water in the barrel is forced above the piston through the

valve at b
; then, at the following up-stroke, this water is lifted

by the piston as it rises, and flows out through the spout shown

in the figure. A quantity of water determined by the capacity

of the barrel is thus delivered from the spout at each up-stroke

of the piston.

It will be seen from what has been said that a suction pump
cannot work unless the vertical height of the tube BC, from the

surface of the water at c to the valve at a, is less than the height

of the water barometer. This height is about 34 feet, so that a

suction pump cannot raise water from a greater depth than

34 feet.

The piston of an ordinary water pump does not usually fit

well enough for the pump to act effectively as an air pump
when there is no water in the barrel; it is therefore some-

times necessary to pour water into the barrel to set the pump
in action.

The general action of the force pump is very similar to that of

the suction pump, but, as shown in Fig. 185, the outlet valve, b,

from the barrel, is at the mouth of the delivery tube S and

not in the piston. The water in the barrel is thus, at each

down-stroke, forced through the valve b into the delivery tube,

and at each up-stroke the back pressure of this water closes the

valve and water enters the barrel through the valve at a.
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Water is thus forced out through the delivery pipe S at each

down-stroke of the pist<wi, and the delivery is, therefore, inter-

mittent. If, however, an air chamber A is connected with the

delivery pipe as shown diagrammatically in Fig. 186, the air in

the chamber becomes compressed under the pressure to which

it is exposed, and the steady pressure of the compressed air

on the water maintains a steady, continuous delivery from the

pump.

Fig. 185. Fig. 186.

132. The Siphon. A siphon is a bent tube used for

drawing off liquid from a vessel when the ordinary process of

pouring the liquid off is undesirable or cannot be conveniently

adopted. The tube usually takes the form of an inverted U or

V, as shown at ABC in Fig. 187, and is generally made with

one leg, AC, longer than the other. It is used as a syphon by
first filling it with the liquid to be drawn off, and then placing

it with the short leg dipping below the level of the liquid in the

vessel to be emptied ;
when this is done the liquid at once flows

through the tube and is delivered- in a steady stream at the open

end of the long leg.

The theory of the action of the instrument is readily under-

stood. Consider the pressure on each face of a very thin trans-
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verse slice of the liquid at the highest point, A, of the tube.

The pressure on the face in contact with the liquid in the leg

AB is evidently the atmospheric pressure minus the pressure

due to a column of liquid of height equal to the vertical height

of the point A above the level of the liquid at B. Similarly,

the pressure on the surface in contact with the liquid in the leg

AC is the atmospheric pressure minus the pressure due to a

column of liquid of height equal to the vertical height of the

point A above the open end of the

tube at C. Hence, if h and h'

denote the vertical heights of the

point A above the points B and C

respectively, as indicated in the

figure, we have (P hdg) as the

pressure on the face of the slice in

contact with the liquid in the leg

AB, and (P h'dg) as the pressure

on the face in contact with the

liquid in leg AC, where P denotes

the atmospheric pressure and d the

density of the liquid. If h is less

than h', (P hdg) is obviously greater than (P h'dg), and

the difference of the pressures on the two faces of the slice

urging it from the leg BA into the leg AC is given by

(P - hdg)
-

(P
-

h'dg), or (h
f -

h) dg. The difference of

pressure which causes the liquid at A to flow outwards through
the siphon is thus seen to be proportional to the difference

between the level of the liquid at B and the open end of the

tube at C.

Fig. 187.
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